497 research outputs found

    Tritium supply and use: a key issue for the development of nuclear fusion energy

    Get PDF
    Full power operation of the International Thermonuclear Experimental Reactor (ITER) has been delayed and will now begin in 2035. Delays to the ITER schedule may affect the availability of tritium for subsequent fusion devices, as the global CANDU-type fission reactor fleet begins to phase out over the coming decades. This study provides an up to date account of future tritium availability by incorporating recent uncertainties over the life extension of the global CANDU fleet, as well as considering the potential impact of tritium demand by other fusion efforts. Despite the delays, our projections suggest that CANDU tritium remains sufficient to support the full operation of ITER. However, whether there is tritium available for a DEMO reactor following ITER is largely uncertain, and is subject to numerous uncontrollable externalities. Further tritium demand may come from any number of private sector “compact fusion” start-ups which have emerged in recent years, all of which aim to accelerate the development of fusion energy. If the associated technical challenges can be overcome, compact fusion programmes have the opportunity to use tritium over the next two decades whilst it is readily available, and before full power DT operation on ITER starts in 2035. Assuming a similar level of performance is achievable, a compact fusion development programme, using smaller reactors operating at lower fusion power, would require smaller quantities of tritium than the ITER programme, leaving sufficient tritium available for multiple concepts to be developed concurrently. The development of concurrent fusion concepts increases the chances of success, as it spreads the risk of failure. Additionally, if full tritium breeding capability is not expected to be demonstrated in DEMO until after 2050, an opportunity exists for compact fusion programmes to incorporate tritium breeding technology in nearer-term devices. DD start-up, which avoids the need for external tritium for reactor start-up, is dependent upon full tritium breeding capability, and may be essential for large-scale commercial roll-out of fusion energy. As such, from the standpoint of availability and use of external tritium, a compact route to fusion energy may be more advantageous, as it avoids longer-term complications and uncertainties in the future supply of tritium

    Effects of Genetic Variants Previously Associated with Fasting Glucose and Insulin in the Diabetes Prevention Program

    Get PDF
    Common genetic variants have been recently associated with fasting glucose and insulin levels in white populations. Whether these associations replicate in pre-diabetes is not known. We extended these findings to the Diabetes Prevention Program, a clinical trial in which participants at high risk for diabetes were randomized to placebo, lifestyle modification or metformin for diabetes prevention. We genotyped previously reported polymorphisms (or their proxies) in/near G6PC2, MTNR1B, GCK, DGKB, GCKR, ADCY5, MADD, CRY2, ADRA2A, FADS1, PROX1, SLC2A2, GLIS3, C2CD4B, IGF1, and IRS1 in 3,548 Diabetes Prevention Program participants. We analyzed variants for association with baseline glycemic traits, incident diabetes and their interaction with response to metformin or lifestyle intervention. We replicated associations with fasting glucose at MTNR1B (P<0.001), G6PC2 (P = 0.002) and GCKR (P = 0.001). We noted impaired β-cell function in carriers of glucose-raising alleles at MTNR1B (P<0.001), and an increase in the insulinogenic index for the glucose-raising allele at G6PC2 (P<0.001). The association of MTNR1B with fasting glucose and impaired β-cell function persisted at 1 year despite adjustment for the baseline trait, indicating a sustained deleterious effect at this locus. We also replicated the association of MADD with fasting proinsulin levels (P<0.001). We detected no significant impact of these variants on diabetes incidence or interaction with preventive interventions. The association of several polymorphisms with quantitative glycemic traits is replicated in a cohort of high-risk persons. These variants do not have a detectable impact on diabetes incidence or response to metformin or lifestyle modification in the Diabetes Prevention Program

    A cross-sectional analysis of HIV and hepatitis C clinical trials 2007 to 2010: the relationship between industry sponsorship and randomized study design

    Get PDF
    Abstract Background The proportion of clinical research sponsored by industry will likely continue to expand as federal funds for academic research decreases, particularly in the fields of HIV/AIDS and hepatitis C (HCV). While HIV and HCV continue to burden the US population, insufficient data exists as to how industry sponsorship affects clinical trials involving these infectious diseases. Debate exists about whether pharmaceutical companies undertake more market-driven research practices to promote therapeutics, or instead conduct more rigorous trials than their non-industry counterparts because of increased resources and scrutiny. The ClinicalTrials.gov registry, which allows investigators to fulfill a federal mandate for public trial registration, provides an opportunity for critical evaluation of study designs for industry-sponsored trials, independent of publication status. As part of a large public policy effort, the Clinical Trials Transformation Initiative (CTTI) recently transformed the ClinicalTrials.gov registry into a searchable dataset to facilitate research on clinical trials themselves. Methods We conducted a cross-sectional analysis of 477 HIV and HCV drug treatment trials, registered with ClinicalTrials.gov from 1 October 2007 to 27 September 2010, to study the relationship of study sponsorship with randomized study design. The likelihood of using randomization given industry (versus non-industry) sponsorship was reported with prevalence ratios (PR). PRs were estimated using crude and stratified tabular analysis and Poisson regression adjusting for presence of a data monitoring committee, enrollment size, study phase, number of study sites, inclusion of foreign study sites, exclusion of persons older than age 65, and disease condition. Results The crude PR was 1.17 (95% CI 0.94, 1.45). Adjusted Poisson models produced a PR of 1.13 (95% CI 0.82, 1.56). There was a trend toward mild effect measure modification by study phase, but this was not statistically significant. In stratified tabular analysis the adjusted PR was 1.14 (95% CI 0.78, 1.68) among phase 2/3 trials and 1.06 (95% CI 0.50, 2.22) among phase 4 trials. Conclusions No significant relationship was found between industry sponsorship and use of randomization in trial design in this cross-sectional study. Prospective studies evaluating other aspects of trial design may shed further light on the relationship between industry sponsorship and appropriate trial methodology

    Bridging Alone: Religious Conservatism, Marital Homogamy, and Voluntary Association Membership

    Full text link
    This study characterizes social insularity of religiously conservative American married couples by examining patterns of voluntary associationmembership. Constructing a dataset of 3938 marital dyads from the second wave of the National Survey of Families and Households, the author investigates whether conservative religious homogamy encourages membership in religious voluntary groups and discourages membership in secular voluntary groups. Results indicate that couples’ shared affiliation with conservative denominations, paired with beliefs in biblical authority and inerrancy, increases the likelihood of religious group membership for husbands and wives and reduces the likelihood of secular group membership for wives, but not for husbands. The social insularity of conservative religious groups appears to be reinforced by homogamy—particularly by wives who share faith with husbands

    Transcriptional Changes Common to Human Cocaine, Cannabis and Phencyclidine Abuse

    Get PDF
    A major goal of drug abuse research is to identify and understand drug-induced changes in brain function that are common to many or all drugs of abuse. As these may underlie drug dependence and addiction, the purpose of the present study was to examine if different drugs of abuse effect changes in gene expression that converge in common molecular pathways. Microarray analysis was employed to assay brain gene expression in postmortem anterior prefrontal cortex (aPFC) from 42 human cocaine, cannabis and/or phencyclidine abuse cases and 30 control cases, which were characterized by toxicology and drug abuse history. Common transcriptional changes were demonstrated for a majority of drug abuse cases (N = 34), representing a number of consistently changed functional classes: Calmodulin-related transcripts (CALM1, CALM2, CAMK2B) were decreased, while transcripts related to cholesterol biosynthesis and trafficking (FDFT1, APOL2, SCARB1), and Golgi/endoplasmic reticulum (ER) functions (SEMA3B, GCC1) were all increased. Quantitative PCR validated decreases in calmodulin 2 (CALM2) mRNA and increases in apolipoprotein L, 2 (APOL2) and semaphorin 3B (SEMA3B) mRNA for individual cases. A comparison between control cases with and without cardiovascular disease and elevated body mass index indicated that these changes were not due to general cellular and metabolic stress, but appeared specific to the use of drugs. Therefore, humans who abused cocaine, cannabis and/or phencyclidine share a decrease in transcription of calmodulin-related genes and increased transcription related to lipid/cholesterol and Golgi/ER function. These changes represent common molecular features of drug abuse, which may underlie changes in synaptic function and plasticity that could have important ramifications for decision-making capabilities in drug abusers

    A novel ruthenium(II)–cobaloxime supramolecular complex for photocatalytic H_2 evolution: synthesis, characterisation and mechanistic studies

    Get PDF
    We report the synthesis and characterization of novel mixed-metal binuclear ruthenium(II)–cobalt(II) photocatalysts for hydrogen evolution in acidic acetonitrile. First, 2-(2′-pyridyl)benzothiazole (pbt), 1, was reacted with RuCl_(3)·xH_(2)O to produce [Ru(pbt)_(2)Cl_2]·0.25CH_(3)COCH_3, 2, which was then reacted with 1,10-phenanthroline-5,6-dione (phendione), 3, in order to produce [Ru(pbt)_(2)(phendione)](PF_(6))_2·4H_(2)O, 4. Compound 4 was then reacted with 4-pyridinecarboxaldehyde in order to produce [Ru(pbt)_(2)(L-pyr)](PF_6)_(2)·9.5H_(2)O, 5 (where L-pyr = (4-pyridine)oxazolo[4,5-f]phenanthroline). Compound 5 was then reacted with [Co(dmgBF_2)_(2)(H_(2)O)_2] (where dmgBF_(2) = difluoroboryldimethylglyoximato) in order to produce the mixed-metal binuclear complex, [Ru(pbt)_(2)(L-pyr)Co(dmgBF_(2))_(2)(H_(2)O)](PF_(6))_2·11H_(2)O·1.5CH_(3)COCH_3, 6. [Ru(Me_(2)bpy)_2(L-pyr)Co(dmgBF_2)_(2)(OH_2)](PF_6)_(2), 7 (where Me_(2)bpy = 1,10-phenanthroline, 4,4′-dimethyl-2,2′-bipyridine) and [Ru(phen)_(2)(L-pyr)Co(dmgBF_2)_(2)(OH_2)](PF_(6))_2, 8 were also synthesised. All complexes were characterized by elemental analysis, ESI MS, HRMS, UV-visible absorption, ^(11)B, ^(19)F, and ^(59)Co NMR, ESR spectroscopy, and cyclic voltammetry, where appropriate. Photocatalytic studies carried out in acidified acetonitrile demonstrated constant hydrogen generation longer than a 42 hour period as detected by gas chromatography. Time resolved spectroscopic measurements were performed on compound 6, which proved an intramolecular electron transfer from an excited Ru(II) metal centre to the Co(II) metal centre via the bridging L-pyr ligand. This resulted in the formation of a cobalt(I)-containing species that is essential for the production of H_2 gas in the presence of H^+ ions. A proposed mechanism for the generation of hydrogen is presented

    The Influence of Enhanced Post-Glacial Coastal Margin Productivity on the Emergence of Complex Societies

    Get PDF
    Abstract We analyze the dynamics of post-glacial coastal margin (CM) productivity and explore how it affected the emergence of six complex CM societies. Following deglaciation, global relative sea level stabilized after ~7000 BP and CM productivity significantly increased in many areas. Primary and secondary productivity (fish) likely increased by an order of magnitude or more. Aquatic animals were readily available in the CM providing sources of polyunsaturated omega-3 fatty acids, high quality protein, and nutrients, especially essential to human nutrition. In all six case studies, mature CMs appear to have been occupied by Neolithic agricultural and fishing villages within ~500 years of sea-level stabilization. Within a few hundred years population densities increased and roughly a millennium later social ranking and monumental architecture appeared. Sea-level stabilization and increased CM productivity in conjunction with agricultural intensification in lower alluvial floodplains were major contributors to the origins of many complex CM societies. Keyword
    corecore