1,453 research outputs found

    Variation in the transfer of radionuclide to freshwater fish: phylogeny or feeding strategy?

    Get PDF
    For both terrestrial vascular plants and marine organisms if has been demonstrated the differences in radionuclide transfer between species can be related to their evolutionary history or phylogeny. Relationships between phylogeny and radionuclide transfer offer a potential approach to help to derive best estimate values if data for a given species-radionuclide are not available. In this paper we describe the analyses of data for radionuclide transfer to freshwater fish from a data base recently compiled to support activities of both the IAEA and ICRP. There are sufficient data in the database to test the hypothesis that radionuclide transfer can be related to the evolutionary of freshwater fish for caesium, strontium and uranium. For instance, the database contains 750 entries for caesium considering nearly 70 species of fish. Initial results indicate that phylogeny does explain some of the variation in radionuclide transfer between species of fish. However, feeding strategy also explains variation in radionuclide transfer between species. In this paper we will compare our results to establish if phylogeny or feeding strategy is the most useful predictor of radionuclide transfer to freshwater fish

    Contextualizing the relevance of basic sciences: small-group simulation with debrief for first- and second-year medical students in an integrated curriculum.

    Get PDF
    There has been a call for increased integration of basic and clinical sciences during preclinical years of undergraduate medical education. Despite the recognition that clinical simulation is an effective pedagogical tool, little has been reported on its use to demonstrate the relevance of basic science principles to the practice of clinical medicine. We hypothesized that simulation with an integrated science and clinical debrief used with early learners would illustrate the importance of basic science principles in clinical diagnosis and management of patients.Small groups of first- and second-year medical students were engaged in a high-fidelity simulation followed by a comprehensive debrief facilitated by a basic scientist and clinician. Surveys including anchored and open-ended questions were distributed at the conclusion of each experience.The majority of the students agreed that simulation followed by an integrated debrief illustrated the clinical relevance of basic sciences (mean ± standard deviation: 93.8% ± 2.9% of first-year medical students; 96.7% ± 3.5% of second-year medical students) and its importance in patient care (92.8% of first-year medical students; 90.4% of second-year medical students). In a thematic analysis of open-ended responses, students felt that these experiences provided opportunities for direct application of scientific knowledge to diagnosis and treatment, improving student knowledge, simulating real-world experience, and developing clinical reasoning, all of which specifically helped them understand the clinical relevance of basic sciences.Small-group simulation followed by a debrief that integrates basic and clinical sciences is an effective means of demonstrating the relationship between scientific fundamentals and patient care for early learners. As more medical schools embrace integrated curricula and seek opportunities for integration, our model is a novel approach that can be utilized

    An SPR based sensor for allergens detection

    Get PDF
    A simple, sensitive and label-free optical sensor method was developed for allergens analysis using α-casein as the biomarker for cow's milk detection, to be used directly in final rinse samples of cleaning in place systems (CIP) of food manufacturers. A Surface Plasmon Resonance (SPR) sensor chip consisting of four sensing arrays enabling the measurement of samples and control binding events simultaneously on the sensor surface was employed in this work. SPR offers several advantages in terms of label free detection, real time measurements and superior sensitivity when compared to ELISA based techniques. The gold sensor chip was used to immobilise α-casein-polyclonal antibody using EDC/NHS coupling procedure. The performance of the assay and the sensor was first optimised and characterised in pure buffer conditions giving a detection limit of 58 ng mL−1 as a direct binding assay. The assay sensitivity can be further improved by using sandwich assay format and amplified with nanoparticles. However, at this stage this is not required as the detection limit achieved exceeded the required allergens detection levels of 2 µg mL−1 for α-S1-casein. The sensor demonstrated good selectivity towards the α-casein as the target analyte and adequate recoveries from CIP final rinse wash samples. The sensor would be useful tool for monitoring allergen levels after cleaning procedures, providing additional data that may better inform upon wider food allergen risk management decision(s) that are made by food manufacturer. In particular, this sensor could potentially help validate or optimise cleaning practices for a given food manufacturing process

    Consistency in Regularizations of the Gauged NJL Model at One Loop Level

    Get PDF
    In this work we revisit questions recently raised in the literature associated to relevant but divergent amplitudes in the gauged NJL model. The questions raised involve ambiguities and symmetry violations which concern the model's predictive power at one loop level. Our study shows by means of an alternative prescription to handle divergent amplitudes, that it is possible to obtain unambiguous and symmetry preserving amplitudes. The procedure adopted makes use solely of {\it general} properties of an eventual regulator, thus avoiding an explicit form. We find, after a thorough analysis of the problem that there are well established conditions to be fulfiled by any consistent regularization prescription in order to avoid the problems of concern at one loop level.Comment: 22 pages, no figures, LaTeX, to appear in Phys.Rev.

    Anomalies in Ward Identities for Three-Point Functions Revisited

    Full text link
    A general calculational method is applied to investigate symmetry relations among divergent amplitudes in a free fermion model. A very traditional work on this subject is revisited. A systematic study of one, two and three point functions associated to scalar, pseudoscalar, vector and axial-vector densities is performed. The divergent content of the amplitudes are left in terms of five basic objects (external momentum independent). No specific assumptions about a regulator is adopted in the calculations. All ambiguities and symmetry violating terms are shown to be associated with only three combinations of the basic divergent objects. Our final results can be mapped in the corresponding Dimensional Regularization calculations (in cases where this technique could be applied) or in those of Gertsein and Jackiw which we will show in detail. The results emerging from our general approach allow us to extract, in a natural way, a set of reasonable conditions (e.g. crucial for QED consistency) that could lead us to obtain all Ward Identities satisfied. Consequently, we conclude that the traditional approach used to justify the famous triangular anomalies in perturbative calculations could be questionable. An alternative point of view, dismissed of ambiguities, which lead to a correct description of the associated phenomenology, is pointed out.Comment: 26 pages, Revtex, revised version, Refs. adde

    Response of cereals to nitrogen in sole cropping and intercropping with different legumes

    Get PDF
    The response of sole and intercropped cereal to nitrogen fertilization was compared in three contrasting cropping systems, sorghum/pigeonpea, maize/groundnut, and sorghum/cowpea. The cereal in these systems responded to nitrogen similarly as in sole cropping, although different legumes affected the cereal differently. There was no current season benefit from the legume, whether it matured earlier or later than the cereal, and for high yields the cereal in intercropping needs fertilizer application. Response to nitrogen varied with the amount and distribution of seasonal rainfall. With increased nitrogen fertilizer applied to the intercropped cereal, the legume yields were suppressed. The optimum dose for the intercropped cereal was similar to that for sole cropping but it was 50% less in a dry year particularly, on a shallow Alfisol. The combined yields of both crops made intercropping more profitable than sole cropping. The relative advantage of intercropping was high in the sorghum/pigeonpea system (40 to 70%) because of the greater temporal difference between species, and moderate in the maize/groundnut (13 to 35%), and sorghum/cowpea (18 to 25%) systems. Although the relative advantage of intercropping (expressed as Land Equivalent Ratio (LER)) decreased with N, the economic value, of the advantage was little affected within the optimum N range because absolute yields increased with fertilization

    Plant Population and Spatial Arrangement Effects in Monocrops and Intercrops in Rainfed Areas

    Get PDF
    Knowledge on the effect of populdtiorl changes and spatial arrangement in intercropping situations unlike for pure cropss is very limited. The paper describes some aspects of total population pressures proportional populations and relative space allocations which are highly interrelated in intercropping. It is pointed out that unless their effects are quantified independent of one . anothers clear understanding of the basic relationships between various crops in mixtures can not be established. The response of crops, sorghum, pearl millet, ragi, sunflower, safflower etc, , to changes in geometry of planting at constant population, such as wide row widths and pairing of rows, which may increase the scope for intercropping is discussed. Under moisture limiting conditions and no N fe r t ilisa t io n , doubling the row width of sorghum sole resulted in 15,8 - 93.2% higher yield depending on soil type, Widening the row width of base crop, without reducing its population, may allow an increase in the total population pressure of the system which may in turn give greater intercropping benefits. The advantages of grouping or pairing of rows in de fic it moisture conditions as an yield improvement practice in sole crops and as a method to alleviate competition between the associated crops in mixtures is discussed with examples. Three crop intercropping with widely spaced pigeonpea showed 66% advantage compared to 45% in the case of two crop intercropping. Possible spatial arrangement of crops for intercropping and sequential cropping to suit broad ridge and furrow systems of cultivation is discusse

    Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms

    Full text link
    Ultra-low density polymers, metals, and ceramic nanofoams are valued for their high strength-to-weight ratio, high surface area and insulating properties ascribed to their structural geometry. We obtain the labrynthine internal structure of a tantalum oxide nanofoam by X-ray diffractive imaging. Finite element analysis from the structure reveals mechanical properties consistent with bulk samples and with a diffusion limited cluster aggregation model, while excess mass on the nodes discounts the dangling fragments hypothesis of percolation theory.Comment: 8 pages, 5 figures, 30 reference
    • …
    corecore