4 research outputs found

    Inter-observer and inter-examination variability of manual vertebral bone attenuation measurements on computed tomography

    Get PDF
    Objective: To determine inter-observer and inter-examination variability of manual attenuation measurements of the vertebrae in low-dose unenhanced chest computed tomography (CT). Methods: Three hundred and sixty-seven lung cancer screening trial participants who underwent baseline and repeat unenhanced low-dose CT after 3 months because of an indeterminate lung nodule were included. The CT attenuation value of the first lumbar vertebrae (L1) was measured in all CTs by one observer to obtain inter-examination reliability. Six observers performed measurements in 100 randomly selected CTs to determine agreement with limits of agreement and Bland-Altman plots and reliability with intraclass correlation coefficients (ICCs). Reclassification analyses were performed using a threshold of 110 HU to define osteoporosis. Results: Inter-examination reliability was excellent with an ICC of 0.92 (p < 0.001). Inter-examination limits of agreement ranged from -26 to 28 HU with a mean difference of 1 ± 14 HU. Inter-observer reliability ICCs ranged from 0.70 to 0.91. Inter-examination variability led to 11.2 % reclassification of participants and inter-observer variability led to 22.1 % reclassification. Conclusions: Vertebral attenuation values can be manually quantified with good to excellent inter-examination and inter-observer reliability on unenhanced low-dose chest CT. This information is valuable for early detection of osteoporosis on low-dose chest CT. Key Points: • Vertebral attenuation values can be manually quantified on low-dose unenhanced CT reliably.• Vertebral attenuation measurements may be helpful in detecting subclinical low bone density.• This could become of importance in the detection of osteoporosis

    Radiation dose reduction for CT assessment of urolithiasis using iterative reconstruction: A prospective intra-individual study

    Get PDF
    Objective: To assess the performance of hybrid (HIR) and model-based iterative reconstruction (MIR) in patients with urolithiasis at reduced-dose computed tomography (CT). Methods: Twenty patients scheduled for unenhanced abdominal CT for follow-up of urolithiasis were prospectively included. Routine dose acquisition was followed by three low-dose acquisitions at 40%, 60% and 80% reduced doses. All images were reconstructed with filtered back projection (FBP), HIR and MIR. Urolithiasis detection rates, gall bladder, appendix and rectosigmoid evaluation and overall subjective image quality were evaluated by two observers. Results: 74 stones were present in 17 patients. Half the stones were not detected on FBP at the lowest dose level, but this improved with MIR to a sensitivity of 100%. HIR resulted in a slight decrease in sensitivity at the lowest dose to 72%, but outperformed FBP. Evaluation of other structures with HIR at 40% and with MIR at 60% dose reductions was comparable to FBP at routine dose, but 80% dose reduction resulted in non-evaluable images. Conclusions: CT radiation dose for urolithiasis detection can be safely reduced by 40 (HIR)–60 (MIR) % without affecting assessment of urolithiasis, possible extra-urinary tract pathology or overall image quality. Key Points: • Iterative reconstruction can be used to substantially lower the radiation dose. • This allows for radiation reduction without affecting sensitivity of stone detection. • Possible extra-urinary tract pathology evaluation is feasible at 40–60% reduced dose

    Prognostic value of heart valve calcifications for cardiovascular events in a lung cancer screening population

    Get PDF
    To assess the prognostic value of aortic valve and mitral valve/annulus calcifications for cardiovascular events in heavily smoking men without a history of cardiovascular disease. Heavily smoking men without a cardiovascular disease history who underwent non-contrast-enhanced low-radiation-dose chest CT for lung cancer screening were included. Non-imaging predictors (age, smoking status and pack-years) were collected and imaging-predictors (calcium volume of the coronary arteries, aorta, aortic valve and mitral valve/annulus) were obtained. The outcome was the occurrence of cardiovascular events. Multivariable Cox proportional-hazards regression was used to calculate hazard-ratios (HRs) with 95 % confidence interval (CI). Subsequently, concordance-statistics were calculated. In total 3111 individuals were included, of whom 186 (6.0 %) developed a cardiovascular event during a follow-up of 2.9 (Q1–Q3, 2.7–3.3) years. If aortic (n = 657) or mitral (n = 85) annulus/valve calcifications were present, cardiovascular event incidence increased to 9.0 % (n = 59) or 12.9 % (n = 11), respectively. HRs of aortic and mitral valve/annulus calcium volume for cardiovascular events were 1.46 (95 % CI, 1.09–1.84) and 2.74 (95 % CI, 0.92–4.56) per 500 mm3. The c-statistic of a basic model including age, pack-years, current smoking status, coronary and aorta calcium volume was 0.68 (95 % CI, 0.63–0.72), which did not change after adding heart valve calcium volume. Aortic valve calcifications are predictors of future cardiovascular events. However, there was no added prognostic value beyond age, number of pack-years, current smoking status, coronary and aorta calcium volume for short term cardiovascular events
    corecore