96 research outputs found

    Synthesis and Bulk Properties of Oxychloride Superconductor Ca2-xNaxCuO2Cl2

    Full text link
    Polycrystalline samples and submillimeter size single crystals of Na-doped Ca2CuO2Cl2 have been synthesized under high pressure. A series of experiments showed that the Na content depends not only on the pressure during the synthesis but also on the synthesis temperature and time. From a comparison of the Na-CCOC data with those of structurally related La214 cuprate superconductors we concluded that chlorine at the apical site is less effective that oxygen in supplying charge carriers to the CuO2 plans. As a result, the coupling between the CuO2 planes is weakened, the transition temperature Tc is reduced and the anisotropic nature is enhanced.Comment: 7 pages, 7 figures, 1 table, presenthed at the Eucas 2007 conference. Accepted for "Journal of Physics: Conference Series (JPCS)" 2008 and European News Forum, Issue 3 (2008

    Torque magnetometry on single-crystal high temperature superconductors near the critical temperature: a scaling approach

    Full text link
    Angular-dependent magnetic torque measurements performed near the critical temperature on single crystals of HgBa_{2}CuO_{4+y}, La_{2-x}Sr{x}CuO_{4}, and YBa_{2}Cu_{3}O_{6.93} are scaled, following the 3D XY model, in order to determine the scaling function dG^{\pm}(z)/dz which describes the universal critical properties near T_{c}. A systematic shift of the scaling function with increasing effective mass anisotropy \gamma = (m_{ab}*/m_{c}*)^{1/2} is observed, which may be understood in terms of a 3D-2D crossover. Further evidence for a 3D-2D crossover is found from temperature-dependent torque measurements carried out in different magnetic fields at different field orientations \delta, which show a quasi 2D "crossing region'' (M*,T*). The occurrence of this "crossing phenomenon'' is explained in a phenomenological way from the weak z dependence of the scaling function around a value z = z*. The "crossing'' temperature T* is found to be angular-dependent. Torque measurements above T_{c} reveal that fluctuations are strongly enhanced in the underdoped regime where the anisotropy is large, whereas they are less important in the overdoped regime.Comment: 9 pages, 10 figures, submitted to PR

    Oxygen isotope effect on the in-plane penetration depth in underdoped La_{2-x}Sr_{x}CuO_{4} single crystals

    Full text link
    We report measurements of the oxygen isotope effect (OIE) on the in-plane penetration depth \lambda_{ab}(0) in underdoped La_{2-x}Sr_{x}CuO_{4} single crystals. A highly sensitive magnetic torque sensor with a resolution of \Delta \tau ~ 10^{-12} Nm was used for the magnetic measurements on microcrystals with a mass of ~ 10 microg. The OIE on \lambda_{ab}^{-2}(0) is found to be -10(2)% for x = 0.080 and -8(1)% for x = 0.086. It arises mainly from the oxygen mass dependence of the in-plane effective mass m_{ab}*. The present results suggest that lattice vibrations are important for the occurrence of high temperature superconductivity.Comment: 4 pages, 3 figures, submitted to PR

    Dynamical Induction of s-wave Component in d-wave Superconductor Driven by Thermal Fluctuations

    Full text link
    We investigated the mutual induction effects between the d-wave and the s-wave components of order parameters due to superconducting fluctuation above the critical temperatures and calculated its contributions to paraconductivity and excess Hall conductivity based on the two-component stochastic TDGL equation. It is shown that the coupling of two components increases paraconductivity while it decreases excess Hall conductivity compared to the cases when each component fluctuates independently. We also found the singular behavior in the paraconductivity and the excess Hall conductivity dependence on the coupling parameter which is consistent with the natural restriction among the coefficients of gradient terms.Comment: 10 pages, 4 figures included, submitted to J.Phys.Soc.Jp

    Spatial Symmetry of Superconducting Gap in YBa2Cu3O7-\delta Obtained from Femtosecond Spectroscopy

    Full text link
    The polarized femtosecond spectroscopies obtained from well characterized (100) and (110) YBa2Cu3O7-\delta thin films are reported. This bulk-sensitive spectroscopy, combining with the well-textured samples, serves as an effective probe to quasiparticle relaxation dynamics in different crystalline orientations. The significant anisotropy in both the magnitude of the photoinduced transient reflectivity change and the characteristic relaxation time indicates that the nature of the relaxation channel is intrinsically different in various axes and planes. By the orientation-dependent analysis, d-wave symmetry of the bulk-superconducting gap in cuprate superconductors emerges naturally.Comment: 8 pages, 4 figures. To be published in Physical Review B, Rapid Communication

    Identification of the bulk pairing symmetry in high-temperature superconductors: Evidence for an extended s-wave with eight line nodes

    Full text link
    we identify the intrinsic bulk pairing symmetry for both electron and hole-doped cuprates from the existing bulk- and nearly bulk-sensitive experimental results such as magnetic penetration depth, Raman scattering, single-particle tunneling, Andreev reflection, nonlinear Meissner effect, neutron scattering, thermal conductivity, specific heat, and angle-resolved photoemission spectroscopy. These experiments consistently show that the dominant bulk pairing symmetry in hole-doped cuprates is of extended s-wave with eight line nodes, and of anisotropic s-wave in electron-doped cuprates. The proposed pairing symmetries do not contradict some surface- and phase-sensitive experiments which show a predominant d-wave pairing symmetry at the degraded surfaces. We also quantitatively explain the phase-sensitive experiments along the c-axis for both Bi_{2}Sr_{2}CaCu_{2}O_{8+y} and YBa_{2}Cu_{3}O_{7-y}.Comment: 11 pages, 9 figure

    Raman study of carrier-overdoping effects on the gap in high-Tc superconducting cuprates

    Full text link
    Raman scattering in the heavily overdoped (Y,Ca)Ba_2Cu_3O_{7-d} (T_c = 65 K) and Bi_2Sr_2CaCu_2O_{8+d} (T_c = 55 K) crystals has been investigated. For the both crystals, the electronic pair-breaking peaks in the A_{1g} and B_{1g} polarizations were largely shifted to the low energies close to a half of 2Delta_0, Delta_0 being the maximum gap. It strongly suggests s-wave mixing into the d-wave superconducting order parameter and the consequent manifestation of the Coulomb screening effect in the B_{1g}-channel. Gradual mixing of s-wave component with overdoping is not due to the change of crystal structure symmetry but a generic feature in all high-T_c superconducting cuprates.Comment: 5 pages, 4 figures, to be published in Phys. Rev. B, Rapid communicaito

    Numerical studies of the phase diagram of layered type II superconductors in a magnetic field

    Full text link
    We report on simulations of layered superconductors using the Lawrence-Doniach model in the framework of the lowest Landau level approximation. We find a first order phase transition with a B(T)B(T) dependence which agrees very well with the experimental ``melting'' line in YBaCuO. The transition is not associated with vortex lattice melting, but separates two vortex liquid states characterised by different degrees of short-range crystalline order and different length scales of correlations between vortices in different layers. The transition line ends at a critical end-point at low fields. We find the magnetization discontinuity and the location of the lower critical magnetic field to be in good agreement with experiments in YBaCuO. Length scales of order parameter correlations parallel and perpendicular to the magnetic field increase exponentially as 1/T at low temperatures. The dominant relaxation time scales grow roughly exponentially with these correlation lengths. We find that the first order phase transition persists in the presence of weak random point disorder but can be suppressed entirely by strong disorder. No vortex glass or Bragg glass state is found in the presence of disorder. The consistency of our numerical results with various experimental features in YBaCuO, including the dependence on anisotropy, and the temperature dependence of the structure factor at the Bragg peaks in neutron scattering experiments is demonstrated.Comment: 25 pages (revtex), 19 figures included, submitted to PR

    MgB2 single crystals: high pressure growth and anisotropic properties

    Full text link
    Single crystals of MgB2 with a size up to 1.5x0.9x0.2 mm3 have been grown with a high pressure cubic anvil technique. The crystal growth process is very peculiar and involves an intermediate nitride, namely MgNB9. Single crystals of BN and MgB2 grow simultaneously by a peritectic decomposition of MgNB9. Magnetic measurements in fields of 1-5 Oe show sharp transitions to the superconducting state at 37-38.6 K with width of ~0.5 K. The high quality of the crystals allowed the accurate determination of magnetic, transport and optical properties as well as scanning tunnelling spectroscopy (STS) and decoration studies. Investigations of crystals with torque magnetometry show that Hc2//c is very low (24 kOe at 15 K), while Hc2//ab increases up to 140 kOe at 15 K. The upper critical field anisotropy gamma = Hc2//ab/ Hc2//c was found to be temperature dependent (decreasing from 6 at 15 K to 2.8 at 35 K). The effective anisotropy gamma_eff, as calculated from reversible torque data near Tc, is field dependent (increasing roughly linearly from 2 in zero field to 3.7 in 10 kOe). The temperature and field dependence of the anisotropy can be related to the double gap structure of MgB2 with a large two-dimensional gap and small three-dimensional gap, the latter being rapidly suppressed in a magnetic field. Torque magnetometry investigations show a pronounced peak effect, indicating an order-disorder transition of vortex matter. Decoration experiments and STS visualise a hexagonal vortex lattice. STS spectra evidence two gaps (3 meV/6 meV) with direction dependent weight. Magneto-optic investigations with H//c show a clear signature of the smaller of the two gaps, disappearing in fields higher than Hc2//c.Comment: 17 pages pdf only, 15 figures integrated (higher resolution photographs available on request); submitted to Supercond. Sci. Technol. (Proceedings of Boromag conference

    Structural discordance between neogene detachments and frontal Sevier thrusts, central Mormon Mountains, southern Nevada

    Get PDF
    Detailed geologic mapping in the Mormon Mountains of southern Nevada provides significant insight into processes of extensional tectonics developed within older compressional orogens. A newly discovered, WSW-directed low-angle normal fault, the Mormon Peak detachment, juxtaposes the highest levels of the frontal most part of the east-vergent, Mesozoic Sevier thrust belt with autochthonous crystalline basement. Palinspastic analysis suggests that the detachment initially dipped 20–25° to the west and cut discordantly across thrust faults. Nearly complete lateral removal of the hanging wall from the area has exposed a 5 km thick longitudinal cross-section through the thrust belt in the footwall, while highly attenuated remnants of the hanging wall (nowhere more than a few hundred meters thick) structurally veneer the range. The present arched configuration of the detachment resulted in part from progressive “domino-style” rotation of a few degrees while it was active, but is largely due to rotation on younger, structurally lower, basement-penetrating normal faults that initiated at high-angle. The geometry and kinematics of normal faulting in the Mormon Mountains suggest that pre-existing thrust planes are not required for the initiation of low-angle normal faults, and even where closely overlapped by extensional tectonism, need not function as a primary control of detachment geometry. Caution must thus be exercised in interpreting low-angle normal faults of uncertain tectonic heritage such as those seen in the COCORP west-central Utah and BIRP's MOIST deep-reflection profiles. Although thrust fault reactivation has reasonably been shown to be the origin of a very few low-angle normal faults, our results indicate that it may not be as fundamental a component of orogenic architecture as it is now widely perceived to be. We conclude that while in many instances thrust fault reactivation may be both a plausible and attractive hypothesis, it may never be assumed
    corecore