85 research outputs found

    Josephson junction between anisotropic superconductors

    Full text link
    The sin-Gordon equation for Josephson junctions with arbitrary misaligned anisotropic banks is derived. As an application, the problem of Josephson vortices at twin planes of a YBCO-like material is considered. It is shown that for an arbitrary orientation of these vortices relative to the crystal axes of the banks, the junctions should experience a mechanical torque which is evaluated. This torque and its angular dependence may, in principle, be measured in small fields, since the flux penetration into twinned crystals begins with nucleation of Josephson vortices at twin planes.Comment: 6 page

    Oxygen isotope effect on the in-plane penetration depth in underdoped La_{2-x}Sr_{x}CuO_{4} single crystals

    Full text link
    We report measurements of the oxygen isotope effect (OIE) on the in-plane penetration depth \lambda_{ab}(0) in underdoped La_{2-x}Sr_{x}CuO_{4} single crystals. A highly sensitive magnetic torque sensor with a resolution of \Delta \tau ~ 10^{-12} Nm was used for the magnetic measurements on microcrystals with a mass of ~ 10 microg. The OIE on \lambda_{ab}^{-2}(0) is found to be -10(2)% for x = 0.080 and -8(1)% for x = 0.086. It arises mainly from the oxygen mass dependence of the in-plane effective mass m_{ab}*. The present results suggest that lattice vibrations are important for the occurrence of high temperature superconductivity.Comment: 4 pages, 3 figures, submitted to PR

    Torque magnetometry on single-crystal high temperature superconductors near the critical temperature: a scaling approach

    Full text link
    Angular-dependent magnetic torque measurements performed near the critical temperature on single crystals of HgBa_{2}CuO_{4+y}, La_{2-x}Sr{x}CuO_{4}, and YBa_{2}Cu_{3}O_{6.93} are scaled, following the 3D XY model, in order to determine the scaling function dG^{\pm}(z)/dz which describes the universal critical properties near T_{c}. A systematic shift of the scaling function with increasing effective mass anisotropy \gamma = (m_{ab}*/m_{c}*)^{1/2} is observed, which may be understood in terms of a 3D-2D crossover. Further evidence for a 3D-2D crossover is found from temperature-dependent torque measurements carried out in different magnetic fields at different field orientations \delta, which show a quasi 2D "crossing region'' (M*,T*). The occurrence of this "crossing phenomenon'' is explained in a phenomenological way from the weak z dependence of the scaling function around a value z = z*. The "crossing'' temperature T* is found to be angular-dependent. Torque measurements above T_{c} reveal that fluctuations are strongly enhanced in the underdoped regime where the anisotropy is large, whereas they are less important in the overdoped regime.Comment: 9 pages, 10 figures, submitted to PR

    MAF1 is a chronic repressor of RNA polymerase III transcription in the mouse.

    Get PDF
    Maf1 <sup>-/-</sup> mice are lean, obesity-resistant and metabolically inefficient. Their increased energy expenditure is thought to be driven by a futile RNA cycle that reprograms metabolism to meet an increased demand for nucleotides stemming from the deregulation of RNA polymerase (pol) III transcription. Metabolic changes consistent with this model have been reported in both fasted and refed mice, however the impact of the fasting-refeeding-cycle on pol III function has not been examined. Here we show that changes in pol III occupancy in the liver of fasted versus refed wild-type mice are largely confined to low and intermediate occupancy genes; high occupancy genes are unchanged. However, in Maf1 <sup>-/-</sup> mice, pol III occupancy of the vast majority of active loci in liver and the levels of specific precursor tRNAs in this tissue and other organs are higher than wild-type in both fasted and refed conditions. Thus, MAF1 functions as a chronic repressor of active pol III loci and can modulate transcription under different conditions. Our findings support the futile RNA cycle hypothesis, elaborate the mechanism of pol III repression by MAF1 and demonstrate a modest effect of MAF1 on global translation via reduced mRNA levels and translation efficiencies for several ribosomal proteins

    Tunneling Spectroscopy of Tl2Ba2CuO6

    Full text link
    New results from tunneling spectroscopies on near optimally-doped single crystals of Tl_{2}Ba_{2}CuO_{6} (Tl-2201) junctions are presented. The superconductor-insulator-normal metal (SIN) tunnel junctions are obtained using the point-contact technique with a Au tip. The tunneling conductances reproducibly show a sharp cusp-like subgap, prominent quasiparticle peaks with a consistent asymmetry, and weakly decreasing backgrounds. A rigorous analysis of the SIN tunneling data is performed using two different models for the dx2y2d_{x^{2}-y^{2}} (d-wave) density of states (DOS). Based on these and earlier results, the tunneling DOS of Tl-2201 have exhibited the most reproducible data that are consistent with a d-wave gap symmetry. We show that the dip feature at 2Δ2\Delta that is clearly seen in SIN tunneling data of Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta} is also present in Tl-2201, but at a weaker level. The gap values for crystals with a bulk T_c = 86 K are in the range of 19-25 meV.Comment: 7 pages, 5 figure

    Dynamical Induction of s-wave Component in d-wave Superconductor Driven by Thermal Fluctuations

    Full text link
    We investigated the mutual induction effects between the d-wave and the s-wave components of order parameters due to superconducting fluctuation above the critical temperatures and calculated its contributions to paraconductivity and excess Hall conductivity based on the two-component stochastic TDGL equation. It is shown that the coupling of two components increases paraconductivity while it decreases excess Hall conductivity compared to the cases when each component fluctuates independently. We also found the singular behavior in the paraconductivity and the excess Hall conductivity dependence on the coupling parameter which is consistent with the natural restriction among the coefficients of gradient terms.Comment: 10 pages, 4 figures included, submitted to J.Phys.Soc.Jp

    Identification of the bulk pairing symmetry in high-temperature superconductors: Evidence for an extended s-wave with eight line nodes

    Full text link
    we identify the intrinsic bulk pairing symmetry for both electron and hole-doped cuprates from the existing bulk- and nearly bulk-sensitive experimental results such as magnetic penetration depth, Raman scattering, single-particle tunneling, Andreev reflection, nonlinear Meissner effect, neutron scattering, thermal conductivity, specific heat, and angle-resolved photoemission spectroscopy. These experiments consistently show that the dominant bulk pairing symmetry in hole-doped cuprates is of extended s-wave with eight line nodes, and of anisotropic s-wave in electron-doped cuprates. The proposed pairing symmetries do not contradict some surface- and phase-sensitive experiments which show a predominant d-wave pairing symmetry at the degraded surfaces. We also quantitatively explain the phase-sensitive experiments along the c-axis for both Bi_{2}Sr_{2}CaCu_{2}O_{8+y} and YBa_{2}Cu_{3}O_{7-y}.Comment: 11 pages, 9 figure

    Spatial Symmetry of Superconducting Gap in YBa2Cu3O7-\delta Obtained from Femtosecond Spectroscopy

    Full text link
    The polarized femtosecond spectroscopies obtained from well characterized (100) and (110) YBa2Cu3O7-\delta thin films are reported. This bulk-sensitive spectroscopy, combining with the well-textured samples, serves as an effective probe to quasiparticle relaxation dynamics in different crystalline orientations. The significant anisotropy in both the magnitude of the photoinduced transient reflectivity change and the characteristic relaxation time indicates that the nature of the relaxation channel is intrinsically different in various axes and planes. By the orientation-dependent analysis, d-wave symmetry of the bulk-superconducting gap in cuprate superconductors emerges naturally.Comment: 8 pages, 4 figures. To be published in Physical Review B, Rapid Communication

    Loss of the RNA polymerase III repressor MAF1 confers obesity resistance.

    Get PDF
    MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences

    Numerical studies of the phase diagram of layered type II superconductors in a magnetic field

    Full text link
    We report on simulations of layered superconductors using the Lawrence-Doniach model in the framework of the lowest Landau level approximation. We find a first order phase transition with a B(T)B(T) dependence which agrees very well with the experimental ``melting'' line in YBaCuO. The transition is not associated with vortex lattice melting, but separates two vortex liquid states characterised by different degrees of short-range crystalline order and different length scales of correlations between vortices in different layers. The transition line ends at a critical end-point at low fields. We find the magnetization discontinuity and the location of the lower critical magnetic field to be in good agreement with experiments in YBaCuO. Length scales of order parameter correlations parallel and perpendicular to the magnetic field increase exponentially as 1/T at low temperatures. The dominant relaxation time scales grow roughly exponentially with these correlation lengths. We find that the first order phase transition persists in the presence of weak random point disorder but can be suppressed entirely by strong disorder. No vortex glass or Bragg glass state is found in the presence of disorder. The consistency of our numerical results with various experimental features in YBaCuO, including the dependence on anisotropy, and the temperature dependence of the structure factor at the Bragg peaks in neutron scattering experiments is demonstrated.Comment: 25 pages (revtex), 19 figures included, submitted to PR
    corecore