29 research outputs found

    Mitochondria and sensory processing in inflammatory and neuropathic pain

    Get PDF
    Rheumatic diseases, such as osteoarthritis and rheumatoid arthritis, affect over 750 million people worldwide and contribute to approximately 40% of chronic pain cases. Inflammation and tissue damage contribute to pain in rheumatic diseases, but pain often persists even when inflammation/damage is resolved. Mechanisms that cause this persistent pain are still unclear. Mitochondria are essential for a myriad of cellular processes and regulate neuronal functions. Mitochondrial dysfunction has been implicated in multiple neurological disorders, but its role in sensory processing and pain in rheumatic diseases is relatively unexplored. This review provides a comprehensive understanding of how mitochondrial dysfunction connects inflammation and damage-associated pathways to neuronal sensitization and persistent pain. To provide an overall framework on how mitochondria control pain, we explored recent evidence in inflammatory and neuropathic pain conditions. Mitochondria have intrinsic quality control mechanisms to prevent functional deficits and cellular damage. We will discuss the link between neuronal activity, mitochondrial dysfunction and chronic pain. Lastly, pharmacological strategies aimed at reestablishing mitochondrial functions or boosting mitochondrial dynamics as therapeutic interventions for chronic pain are discussed. The evidence presented in this review shows that mitochondria dysfunction may play a role in rheumatic pain. The dysfunction is not restricted to neuronal cells in the peripheral and central nervous system, but also includes blood cells and cells at the joint level that may affect pain pathways indirectly. Pre-clinical and clinical data suggest that modulation of mitochondrial functions can be used to attenuate or eliminate pain, which could be beneficial for multiple rheumatic diseases

    NLRP3 inflammasome activation in sensory neurons promotes chronic inflammatory and osteoarthritis pain

    Get PDF
    Pain is one of the most debilitating symptoms in rheumatic diseases. Pain often persists after total knee replacement in osteoarthritis, or when inflammation is minimal/absent in rheumatoid arthritis. This suggests that pain transitions to a chronic state independent of the original damage/inflammation. Mitochondrial dysfunction in the nervous system promotes chronic pain and is linked to NLRP3 inflammasome activation. Therefore, we investigated the role of mitochondrial dysfunction and NLRP3 inflammasome activation in the transition from acute to persistent inflammation-induced nociplastic pain and in persistent monoiodoacetate-induced osteoarthritis pain. Intraplantar injection of carrageenan in mice induced transient inflammatory pain that resolved within 7 days. A subsequent intraplantar PGE 2 injection induced persistent mechanical hypersensitivity, while in naive mice it resolved within one day. Thus, this initial transient inflammation induced maladaptive nociceptor neuroplasticity, so-called hyperalgesic priming. At Day 7, when mice were primed, expression of NLRP3 inflammasome pathway components was increased, and dorsal root ganglia (DRG) neurons displayed signs of activated NLRP3 inflammasome. Inhibition of NLRP3 inflammasome with MCC950 prevented the transition from acute to chronic pain in this hyperalgesic priming model. In mice with persistent monoiodoacetate-induced osteoarthritis pain, DRG neurons displayed signs of mitochondrial oxidative stress and NLRP3 inflammasome activation. Blocking NLRP3 inflammasome activity attenuated established osteoarthritis pain. In males, NLPR3 inhibition had longer-lasting effects than in females. Overall, these data suggest that NLRP3 inflammasome activation in sensory neurons, potentially caused by neuronal oxidative stress, promotes development of persistent inflammatory and osteoarthritis pain. Therefore, targeting NLRP3 inflammasome pathway may be a promising approach to treat chronic pain

    Human FAM173A is a mitochondrial lysine-specific methyltransferase that targets adenine nucleotide translocase and affects mitochondrial respiration

    Get PDF
    Lysine methylation is a common post-translational modification of nuclear and cytoplasmic proteins, but is also present in mitochondria. The human protein denoted "family with sequence similarity 173 member B" (FAM173B) was recently uncovered as a mitochondrial lysine (K)-specific methyltransferase (KMT) targeting the c-subunit of mitochondrial ATP synthase (ATPSc), and was therefore renamed ATPSc-KMT. We here set out to investigate the biochemical function of its yet uncharacterized paralogue FAM173A. We demonstrate that FAM173A localizes to mitochondria, mediated by a non-canonical targeting sequence that is partially retained in the mature protein. Immunoblotting analysis using methyllysine-specific antibodies revealed that FAM173A knock-out (KO) abrogates lysine methylation of a single mitochondrial protein in human cells. Mass spectrometry analysis identified this protein as adenine nucleotide translocase (ANT), represented by two highly similar isoforms ANT2 and ANT3. We found that methylation occurs at Lys-52 of ANT, which was previously reported to be trimethylated. Complementation of KO cells with WT or enzyme-dead FAM173A indicated that the enzymatic activity of FAM173A is required for ANT methylation at Lys-52 to occur. Both in human cells and in rat organs, Lys-52 was exclusively trimethylated, indicating that this modification is constitutive, rather than regulatory and dynamic. Moreover, FAM173A-deficient cells displayed increased mitochondrial respiration compared with FAM173A-proficient cells. In summary, we demonstrate that FAM173A is the long-sought KMT responsible for ANT methylation at Lys-52, and point out the functional significance of Lys-52 methylation in ANT. Based on the established naming nomenclature for KMTs, we propose to rename FAM173A to ANT-KMT (gene name ANTKMT)

    Myostatin and CXCL11 promote nervous tissue macrophages to maintain osteoarthritis pain

    Get PDF
    Pain is the most debilitating symptom of knee osteoarthritis (OA) that can even persist after total knee replacement. The severity and duration of pain do not correlate well with joint tissue alterations, suggesting other mechanisms may drive pain persistence in OA. Previous work identified that macrophages accumulate in the dorsal root ganglia (DRG) containing the somas of sensory neurons innervating the injured knee joint in a mouse OA model and acquire a M1-like phenotype to maintain pain. Here we aimed to unravel the mechanisms that govern DRG macrophage accumulation and programming. The accumulation of F4/80 +iNOS + (M1-like) DRG macrophages was detectable at day 3 after mono-iodoacetate (MIA)-induced OA in the mouse. Depletion of macrophages prior to induction of OA resolved pain-like behaviors by day 7 without affecting the initial development of pain-like behaviors. Analysis of DRG transcript identified CXCL11 and myostatin. CXCL11 and myostatin were increased at 3 weeks post OA induction, with CXCL11 expression partially localized in satellite glial cells and myostatin in sensory neurons. Blocking CXCL11 or myostatin prevented the persistence of OA pain, without affecting the initiation of pain. CXCL11 neutralization reduced the number of total and F4/80 +iNOS + DRG macrophages, whilst myostatin inhibition diminished the programming of F4/80 +iNOS + DRG macrophages. Intrathecal injection of recombinant CXCL11 did not induce pain-associated behaviors. In contrast, intrathecal myostatin increased the number of F4/80 +iNOS + DRG macrophages concurrent with the development of mechanical hypersensitivity that was prevented by macrophages depletion or CXCL11 blockade. Finally, myostatin inhibition during established OA, resolved pain and F4/80 +iNOS + macrophage accumulation in the DRG. In conclusion, DRG macrophages maintain OA pain, but are not required for the induction of OA pain. Myostatin is a key ligand in neuro-immune communication that drives the persistence of pain in OA through nervous tissue macrophages and represent a novel therapeutic target for the treatment of OA pain

    Astrocyte GRK2 as a novel regulator of glutamate transport and brain damage

    No full text
    G protein-coupled receptor (GPCR) kinase 2 (GRK2) regulates cellular signaling via desensitization of GPCRs and by direct interaction with intracellular signaling molecules. We recently described that ischemic brain injury decreases cerebral GRK2 levels. Here we studied the effect of astrocyte GRK2-deficiency on neonatal brain damage in vivo. As astrocytes protect neurons by taking up glutamate via plasma-membrane transporters, we also studied the effect of GRK2 on the localization of the GLutamate ASpartate Transporter (GLAST). Brain damage induced by hypoxia-ischemia was significantly reduced in GFAP-GRK2(+/−) mice, which have a 60% reduction in astrocyte GRK2 compared to GFAP-WT littermates. In addition, GRK2-deficient astrocytes have higher plasma-membrane levels of GLAST and an increased capacity to take up glutamate in vitro. In search for the mechanism by which GRK2 regulates GLAST expression, we observed increased GFAP levels in GRK2-deficient astrocytes. GFAP and the cytoskeletal protein ezrin are known regulators of GLAST localization. In line with this evidence, GRK2-deficiency reduced phosphorylation of the GRK2 substrate ezrin and enforced plasma-membrane GLAST association after stimulation with the group I mGluR-agonist DHPG. When ezrin was silenced, the enhanced plasma-membrane GLAST association in DHPG-exposed GRK2-deficient astrocytes was prevented. In conclusion, we identified a novel role of astrocyte GRK2 in regulating plasma-membrane GLAST localization via an ezrindependent route. We demonstrate that the 60% reduction in astrocyte GRK2 protein level that is observed in GFAP-GRK2(+/−) mice is sufficient to significantly reduce neonatal ischemic brain damage. These findings underline the critical role of GRK2 regulation in astrocytes for dampening the extent of brain damage after ischemia

    Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2

    Get PDF
    Insulin resistance is a common feature of obesity and predisposes individuals to various prevalent pathological conditions. G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor kinase 2 (GRK2) integrates several signal transduction pathways and is emerging as a physiologically relevant inhibitor of insulin signaling. GRK2 abundance is increased in humans with metabolic syndrome and in different murine models of insulin resistance. To support GRK2 as a potential drug target in type 2 diabetes and obesity, we investigated whether lowering GRK2 abundance reversed an ongoing systemic insulin-resistant phenotype, using a mouse model of tamoxifen-induced GRK2 ablation after high-fat diet-dependent obesity and insulin resistance. Tamoxifen-triggered GRK2 deletion impeded further body weight gain, normalized fasting glycemia, improved glucose tolerance, and was associated with preserved insulin sensitivity in skeletal muscle and liver, thereby maintaining whole-body glucose homeostasis. Moreover, when continued to be fed a high-fat diet, these animals displayed reduced fat mass and smaller adipocytes, were resistant to the development of liver steatosis, and showed reduced expression of proinflammatory markers in the liver. Our results indicate that GRK2 acts as a hub to control metabolic functions in different tissues, which is key to controlling insulin resistance development in vivo. These data suggest that inhibiting GRK2 could reverse an established insulin-resistant and obese phenotype, thereby putting forward this enzyme as a potential therapeutic target linking glucose homeostasis and regulation of adiposity

    Mesenchymal Stem Cell Transplantation Attenuates Brain Injury After Neonatal Stroke

    No full text
    <p>Background and Purpose-Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulating repair processes. We investigated whether MSC treatment improves recovery after neonatal stroke and whether MSC overexpressing brain-derived neurotrophic factor (MSC-BDNF) further enhances recovery.</p><p>Methods-We performed 1.5-hour transient middle cerebral artery occlusion in 10-day-old rats. Three days after reperfusion, pups with evidence of injury by diffusion-weighted MRI were treated intranasally with MSC, MSC-BDNF, or vehicle. To determine the effect of MSC treatment, brain damage, sensorimotor function, and cerebral cell proliferation were analyzed.</p><p>Results-Intranasal delivery of MSC-and MSC-BDNF significantly reduced infarct size and gray matter loss in comparison with vehicle-treated rats without any significant difference between MSC-and MSC-BDNF-treatment. Treatment with MSC-BDNF significantly reduced white matter loss with no significant difference between MSC-and MSC-BDNF-treatment. Motor deficits were also improved by MSC treatment when compared with vehicle-treated rats. MSC-BDNF- treatment resulted in an additional significant improvement of motor deficits 14 days after middle cerebral artery occlusion, but there was no significant difference between MSC or MSC-BDNF 28 days after middle cerebral artery occlusion. Furthermore, treatment with either MSC or MSC-BDNF induced long-lasting cell proliferation in the ischemic hemisphere.</p><p>Conclusions-Intranasal administration of MSC after neonatal stroke is a promising therapy for treatment of neonatal stroke. In this experimental paradigm, MSC-and BNDF-hypersecreting MSC are equally effective in reducing ischemic brain damage. (Stroke. 2013;44:1426-1432.)</p>

    IL4-10 fusion protein is a Novel drug to Treat persistent inflammatory pain

    No full text
    Chronic pain is a major clinical problem that is difficult to treat and requires novel therapies. Although most pain therapies primarily target neurons, neuroinflammatory processes characterized by spinal cord and dorsal root ganglion production of proinflammatory cytokines play an important role in persistent pain states and represent potential therapeutic targets. Anti-inflammatory cytokines are attractive candidates to regulate aberrant neuroinflammatory processes, but the therapeutic potential of these cytokines as stand-alone drugs is limited. Their optimal function requires concerted actions with other regulatory cytokines, and their relatively small size causes rapid clearance. To overcome these limitations, we developed a fusion protein of the anti-inflammatory cytokines interleukin 4 (IL4) and IL10. The IL4-10 fusion protein is a 70 kDa glycosylated dimeric protein that retains the functional activity of both cytokine moieties. Intrathecal administration of IL4-10 dose-dependently inhibited persistent inflammatory pain in mice: three IL4-10 injections induced full resolution of inflammatory pain in two different mouse models of persistent inflammatory pain. Both cytokine moieties were required for optimal effects. The IL4-10 fusion protein was more effective than the individual cytokines or IL4 plus IL10 combination therapy and also inhibited allodynia in a mouse model of neuropathic pain. Mechanistically, IL4-10 inhibited the activity of glial cells and reduced spinal cord and dorsal root ganglion cytokine levels without affecting paw inflammation. In conclusion, we developed a novel fusion protein with improved efficacy to treat pain, compared with wild-type anti-inflammatory cytokines. The IL4-10 fusion protein has potential as a treatment for persistent inflammatory pain

    Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain

    Get PDF
    The current paradigm is that inflammatory pain passively resolves following the cessation of inflammation. Yet, in a substantial proportion of patients with inflammatory diseases, resolution of inflammation is not sufficient to resolve pain, resulting in chronic pain. Mechanistic insight into how inflammatory pain is resolved is lacking. Here, we show that macrophages actively control resolution of inflammatory pain remotely from the site of inflammation by transferring mitochondria to sensory neurons. During resolution of inflammatory pain in mice, M2-like macrophages infiltrate the dorsal root ganglia that contain the somata of sensory neurons, concurrent with the recovery of oxidative phosphorylation in sensory neurons. The resolution of pain and the transfer of mitochondria requires expression of CD200 receptor (CD200R) on macrophages and the non-canonical CD200R-ligand iSec1 on sensory neurons. Our data reveal a novel mechanism for active resolution of inflammatory pain
    corecore