18 research outputs found

    Immunization with HIV Gag targeted to dendritic cells followed by recombinant New York vaccinia virus induces robust T-cell immunity in nonhuman primates

    Get PDF
    Protein vaccines, if rendered immunogenic, would facilitate vaccine development against HIV and other pathogens. We compared in nonhuman primates (NHPs) immune responses to HIV Gag p24 within 3G9 antibody to DEC205 ( DEC-HIV Gag p24 ), an uptake receptor on dendritic cells, to nontargeted protein, with or without poly ICLC, a synthetic double stranded RNA, as adjuvant. Priming s.c. with 60 ?g of both HIV Gag p24 vaccines elicited potent CD4+ T cells secreting IL-2, IFN-Îł, and TNF-α, which also proliferated. The responses increased with each of three immunizations and recognized multiple Gag peptides. DEC-HIV Gag p24 showed better cross-priming for CD8+ T cells, whereas the avidity of anti-Gag antibodies was ∌10-fold higher with nontargeted Gag 24 protein. For both protein vaccines, poly ICLC was essential for T- and B-cell immunity. To determine whether adaptive responses could be further enhanced, animals were boosted with New York vaccinia virus (NYVAC)-HIV Gag/Pol/Nef. Gag-specific CD4+ and CD8+ T-cell responses increased markedly after priming with both protein vaccines and poly ICLC. These data reveal qualitative differences in antibody and T-cell responses to DEC-HIV Gag p24 and Gag p24 protein and show that prime boost with protein and adjuvant followed by NYVAC elicits potent cellular immunity

    Toll-like receptor agonists influence the magnitude and quality of memory T cell responses after prime-boost immunization in nonhuman primates

    Get PDF
    There is a remarkable heterogeneity in the functional profile (quality) of T cell responses. Importantly, the magnitude and/or quality of a response required for protection may be different depending on the infection. Here, we assessed the capacity of different Toll like receptor (TLR)-binding compounds to influence T helper cell (Th)1 and CD8+ T cell responses when used as adjuvants in nonhuman primates (NHP) with HIV Gag as a model antigen. NHP were immunized with HIV Gag protein emulsified in Montanide ISA 51, an oil-based adjuvant, with or without a TLR7/8 agonist, a TLR8 agonist, or the TLR9 ligand cytosine phosphate guanosine oligodeoxynucleotides (CpG ODN), and boosted 12 wk later with a replication-defective adenovirus-expressing HIV-Gag (rAD-Gag). Animals vaccinated with HIV Gag protein/Montanide and CpG ODN or the TLR7/8 agonist had higher frequencies of Th1 responses after primary immunization compared to all other vaccine groups. Although the rAD-Gag boost did not elevate the frequency of Th1 memory cytokine responses, there was a striking increase in HIV Gag-specific CD8+ T cell responses after the boost in all animals that had received a primary immunization with any of the TLR adjuvants. Importantly, the presence and type of TLR adjuvant used during primary immunization conferred stability and dramatically influenced the magnitude and quality of the Th1 and CD8+ T cell responses after the rAD-Gag boost. These data provide insights for designing prime-boost immunization regimens to optimize Th1 and CD8+ T cell responses

    Association of TLR7 Variants with AIDS-Like Disease and AIDS Vaccine Efficacy in Rhesus Macaques

    Get PDF
    In HIV infection, TLR7-triggered IFN-α production exerts a direct antiviral effect through the inhibition of viral replication, but may also be involved in immune pathogenesis leading to AIDS. TLR7 could also be an important mediator of vaccine efficacy. In this study, we analyzed polymorphisms in the X-linked TLR7 gene in the rhesus macaque model of AIDS. Upon resequencing of the TLR7 gene in 36 rhesus macaques of Indian origin, 12 polymorphic sites were detected. Next, we identified three tightly linked single nucleotide polymorphisms (SNP) as being associated with survival time. Genotyping of 119 untreated, simian immunodeficiency virus (SIV)-infected male rhesus macaques, including an ‘MHC adjusted’ subset, revealed that the three TLR7 SNPs are also significantly associated with set-point viral load. Surprisingly, this effect was not observed in 72 immunized SIV-infected male monkeys. We hypothesize (i) that SNP c.13G>A in the leader peptide is causative for the observed genotype-phenotype association and that (ii) the underlying mechanism is related to RNA secondary structure formation. Therefore, we investigated a fourth SNP (c.-17C>T), located 17 bp upstream of the ATG translation initiation codon, that is also potentially capable of influencing RNA structure. In c.13A carriers, neither set-point viral load nor survival time were related to the c.-17C>T genotype. In c.13G carriers, by contrast, the c.-17C allele was significantly associated with prolonged survival. Again, no such association was detected among immunized SIV-infected macaques. Our results highlight the dual role of TLR7 in immunodeficiency virus infection and vaccination and imply that it may be important to control human AIDS vaccine trials, not only for MHC genotype, but also for TLR7 genotype

    Protective T cell immunity in mice following protein-TLR7/8 agonist-conjugate immunization requires aggregation, type I IFN, and multiple DC subsets

    No full text
    The success of a non-live vaccine requires improved formulation and adjuvant selection to generate robust T cell immunity following immunization. Here, using protein linked to a TLR7/8 agonist (conjugate vaccine), we investigated the functional properties of vaccine formulation, the cytokines, and the DC subsets required to induce protective multifunctional T cell immunity in vivo. The conjugate vaccine required aggregation of the protein to elicit potent Th1 CD4+ and CD8+ T cell responses. Remarkably, the conjugate vaccine, through aggregation of the protein and activation of TLR7 in vivo, led to an influx of migratory DCs to the LN and increased antigen uptake by several resident and migratory DC subsets, with the latter effect strongly influenced by vaccine-induced type I IFN. Ex vivo migratory CD8–DEC205+CD103–CD326– langerin-negative dermal DCs were as potent in cross-presenting antigen to naive CD8+ T cells as CD11c+CD8+ DCs. Moreover, these cells also influenced Th1 CD4+ T cell priming. In summary, we propose a model in which broad-based T cell–mediated responses upon vaccination can be maximized by codelivery of aggregated protein and TLR7/8 agonist, which together promote optimal antigen acquisition and presentation by multiple DC subsets in the context of critical proinflammatory cytokines
    corecore