365 research outputs found

    Testing Scalar-Tensor Gravity Using Space Gravitational-Wave Interferometers

    Get PDF
    We calculate the bounds which could be placed on scalar-tensor theories of gravity of the Jordan, Fierz, Brans and Dicke type by measurements of gravitational waveforms from neutron stars (NS) spiralling into massive black holes (MBH) using LISA, the proposed space laser interferometric observatory. Such observations may yield significantly more stringent bounds on the Brans-Dicke coupling parameter \omega than are achievable from solar system or binary pulsar measurements. For NS-MBH inspirals, dipole gravitational radiation modifies the inspiral and generates an additional contribution to the phase evolution of the emitted gravitational waveform. Bounds on \omega can therefore be found by using the technique of matched filtering. We compute the Fisher information matrix for a waveform accurate to second post-Newtonian order, including the effect of dipole radiation, filtered using a currently modeled noise curve for LISA, and determine the bounds on \omega for several different NS-MBH canonical systems. For example, observations of a 1.4 solar mass NS inspiralling to a 1000 solar mass MBH with a signal-to-noise ratio of 10 could yield a bound of \omega > 240,000, substantially greater than the current experimental bound of \omega > 3000.Comment: 18 pages, 4 figures, 1 table; to be submitted to Phys. Rev.

    A New Exponential Gravity

    Full text link
    We propose a new exponential f(R) gravity model with f(R)=(R-\lambda c)e^{\lambda(c/R)^n} and n>3, \lambda\geq 1, c>0 to explain late-time acceleration of the universe. At the high curvature region, the model behaves like the \LambdaCDM model. In the asymptotic future, it reaches a stable de-Sitter spacetime. It is a cosmologically viable model and can evade the local gravity constraints easily. This model share many features with other f(R) dark energy models like Hu-Sawicki model and Exponential gravity model. In it the dark energy equation of state is of an oscillating form and can cross phantom divide line \omega_{de}=-1. In particular, in the parameter range 3< n\leq 4, \lambda \sim 1, the model is most distinguishable from other models. For instance, when n=4, \lambda=1, the dark energy equation of state will cross -1 in the earlier future and has a stronger oscillating form than the other models, the dark energy density in asymptotical future is smaller than the one in the high curvature region. This new model can evade the local gravity tests easily when n>3 and \lambda>1.Comment: 12 pages, 8 figure

    Geodetic precession and frame dragging observed far from massive objects and close to a gyroscope

    Full text link
    Total precession (geodetic precession and frame dragging) depends on the velocity of each source of gravitation, which means that it depends on the choice of the coordinate system. We consider the latter as an anomaly specifically in the Gravity Probe B experiment, we investigated it and solved this anomaly. Thus, we proved that if our present expression for the geodetic precession is correct, then the frame dragging should be 25% less than its predicted value.Comment: 11 page

    An interacting scalar field and the recent cosmic acceleration

    Full text link
    In this paper it is shown that the Brans - Dicke scalar field itself can serve the purpose of providing an early deceleration and a late time acceleration of the universe without any need of quintessence field if one considers an interaction, i.e, transfer of energy between the dark matter and the Brans - Dicke scalar field.Comment: 10 pages, 2 figure

    Loop-Generated Bounds on Changes to the Graviton Dispersion Relation

    Get PDF
    We identify the effective theory appropriate to the propagation of massless bulk fields in brane-world scenarios, to show that the dominant low-energy effect of asymmetric warping in the bulk is to modify the dispersion relation of the effective 4-dimensional modes. We show how such changes to the graviton dispersion relation may be bounded through the effects they imply, through loops, for the propagation of standard model particles. We compute these bounds and show that they provide, in some cases, the strongest constraints on nonstandard gravitational dispersions. The bounds obtained in this way are the strongest for the fewest extra dimensions and when the extra-dimensional Planck mass is the smallest. Although the best bounds come for warped 5-D scenarios, for which the 5D Planck Mass is O(TeV), even in 4 dimensions the graviton loop can lead to a bound on the graviton speed which is comparable with other constraints.Comment: 18 pages, LaTeX, 4 figures, uses revte

    Testing gravity to second post-Newtonian order: a field-theory approach

    Full text link
    A new, field-theory-based framework for discussing and interpreting tests of gravity, notably at the second post-Newtonian (2PN) level, is introduced. Contrary to previous frameworks which attempted at parametrizing any conceivable deviation from general relativity, we focus on the best motivated class of models, in which gravity is mediated by a tensor field together with one or several scalar fields. The 2PN approximation of these "tensor-multi-scalar" theories is obtained thanks to a diagrammatic expansion which allows us to compute the Lagrangian describing the motion of N bodies. In contrast with previous studies which had to introduce many phenomenological parameters, we find that the 2PN deviations from general relativity can be fully described by only two new 2PN parameters, epsilon and zeta, beyond the usual (Eddington) 1PN parameters beta and gamma. It follows from the basic tenets of field theory, notably the absence of negative-energy excitations, that (beta-1), epsilon and zeta (as well as any new parameter entering higher post-Newtonian orders) must tend to zero with (gamma-1). It is also found that epsilon and zeta do not enter the 2PN equations of motion of light. Therefore, light-deflection or time-delay experiments cannot probe any theoretically motivated 2PN deviation from general relativity, but they can give a clean access to (gamma-1), which is of greatest significance as it measures the basic coupling strength of matter to the scalar fields. Because of the importance of self-gravity effects in neutron stars, binary-pulsar experiments are found to constitute a unique testing ground for the 2PN structure of gravity. A simplified analysis of four binary pulsars already leads to significant constraints: |epsilon| < 7x10^-2, |zeta| < 6x10^-3.Comment: 63 pages, 11 figures.ps.tar.gz.uu, REVTeX 3.

    Application of energy and angular momentum balance to gravitational radiation reaction for binary systems with spin-orbit coupling

    Full text link
    We study gravitational radiation reaction in the equations of motion for binary systems with spin-orbit coupling, at order (v/c)^7 beyond Newtonian gravity, or O(v/c)^2 beyond the leading radiation reaction effects for non-spinning bodies. We use expressions for the energy and angular momentum flux at infinity that include spin-orbit corrections, together with an assumption of energy and angular momentum balance, to derive equations of motion that are valid for general orbits and for a class of coordinate gauges. We show that the equations of motion are compatible with those derived earlier by a direct calculation.Comment: 12 pages, submitted to General Relativity and Gravitatio

    Gravitational time advancement and its possible detection

    Full text link
    The gravitational time advancement is a natural but a consequence of curve space-time geometry. In the present work the expressions of gravitational time advancement have been obtained for geodesic motions. The situation when the distance of signal travel is small in comparison to the distance of closest approach has also been considered. The possibility of experimental detection of time advancement effect has been explored.Comment: 5 pages, 4 figures, a part of the work has been changed in the revised versio

    Generalized Brans-Dicke theories

    Full text link
    In Brans-Dicke theory a non-linear self interaction of a scalar field allows a possibility of realizing the late-time cosmic acceleration, while recovering the General Relativistic behavior at early cosmological epochs. We extend this to more general modified gravitational theories in which a de Sitter solution for dark energy exists without using a field potential. We derive a condition for the stability of the de Sitter point and study the background cosmological dynamics of such theories. We also restrict the allowed region of model parameters from the demand for the avoidance of ghosts and instabilities. A peculiar evolution of the field propagation speed allows us to distinguish those theories from the LCDM model.Comment: 14 pages, 4 figures, version to appear in JCA

    TransverseDiff gravity is to scalar-tensor as unimodular gravity is to General Relativity

    Full text link
    Transverse Diffeomorphism (TDiff) theories are well-motivated theories of gravity from the quantum perspective, which are based upon a gauge symmetry principle. The main contribution of this work is to firmly establish a correspondence between TransverseDiff and the better-known scalar-tensor gravity --- in its more general form ---, a relation which is completely analogous to that between unimodular gravity and General Relativity. We then comment on observational aspects of TDiff. In connection with this proof, we derive a very general rule that determines under what conditions the procedure of fixing a gauge symmetry can be equivalently applied before the variational principle leading to the equations of motion, as opposed to the standard procedure, which takes place afterwards; this rule applies to gauge-fixing terms without derivatives.Comment: 10 pages; amsart style; v3: version as appeared in JCAP, redaction improve
    corecore