21,383 research outputs found
Stokes trapping and planet formation
It is believed that planets are formed by aggregation of dust particles
suspended in the turbulent gas forming accretion disks around developing stars.
We describe a mechanism, termed 'Stokes trapping', by which turbulence limits
the growth of aggregates of dust particles, so that their Stokes number
(defined as the ratio of the damping time of the particles to the Kolmogorov
dissipation timescale) remains close to unity. We discuss possible mechanisms
for avoiding this barrier to further growth. None of these is found to be
satisfactory and we introduce a new theory which does not involve the growth of
small clusters of dust grains.Comment: 30 pages, 4 figures. Revised version has improved concluding remarks,
extended discussion of sticking velocit
Recommended from our members
Seeing the music in their hands: How conductors' depictions shape the music
Depiction is a way of ‘showing’ meaning through certain gestures or demonstrations. Conductors often use depiction, including multimodal depiction, as well as descriptive talk, to convey meaning to their choirs. This paper considers four short extracts from choir rehearsals with different conductors, to show how they combine description and depiction, including vocal models, facial expressions, metaphoric and iconic gestures and body language to communicate about music, specifically here as part of the activity of modelling
Shock fragmentation model for gravitational collapse
A cloud of gas collapsing under gravity will fragment. We present a new
theory for this process, in which layers shocked gas fragment due to their
gravitational instability. Our model explains why angular momentum does not
inhibit the collapse process. The theory predicts that the fragmentation
process produces objects which are significantly smaller than most stars,
implying that accretion onto the fragments plays an essential role in
determining the initial masses of stars. This prediction is also consistent
with the hypothesis that planets can be produced by gravitational collapse.Comment: 22 pages, 3 figure
The Quantum-Classical Crossover in the Adiabatic Response of Chaotic Systems
The autocorrelation function of the force acting on a slow classical system,
resulting from interaction with a fast quantum system is calculated following
Berry-Robbins and Jarzynski within the leading order correction to the
adiabatic approximation. The time integral of the autocorrelation function is
proportional to the rate of dissipation. The fast quantum system is assumed to
be chaotic in the classical limit for each configuration of the slow system. An
analytic formula is obtained for the finite time integral of the correlation
function, in the framework of random matrix theory (RMT), for a specific
dependence on the adiabatically varying parameter. Extension to a wider class
of RMT models is discussed. For the Gaussian unitary and symplectic ensembles
for long times the time integral of the correlation function vanishes or falls
off as a Gaussian with a characteristic time that is proportional to the
Heisenberg time, depending on the details of the model. The fall off is
inversely proportional to time for the Gaussian orthogonal ensemble. The
correlation function is found to be dominated by the nearest neighbor level
spacings. It was calculated for a variety of nearest neighbor level spacing
distributions, including ones that do not originate from RMT ensembles. The
various approximate formulas obtained are tested numerically in RMT. The
results shed light on the quantum to classical crossover for chaotic systems.
The implications on the possibility to experimentally observe deterministic
friction are discussed.Comment: 26 pages, including 6 figure
Phylogenetic relationships of Indian caecilians (Amphibia: Gymnophiona) inferred from mitochondrial rRNA gene sequences
India has a diverse caecilian fauna, including representatives of three of the six currently recognized families, the Caeciliidae, Ichthyophiidae, the endemic Uraeotyphlidae, but previous molecular phylogenetic studies of caecilians have not included sequences for any Indian caecilians. Partial 12S and 16S mitochondrial gene sequences were obtained for a single representative of each of the caecilian families found in India and aligned against previously reported sequences for 13 caecilian species. The resulting alignment (16 taxa, 1200 sites, of which 288 cannot be aligned unambiguously) was analyzed using parsimony, maximum-likelihood, and distance methods. As judged by bootstrap proportions, decay indices, and leaf stabilities, well-supported relationships of the Indian caecilians are recovered from the alignment. The data (1) corroborate the hypothesis, based on morphology, that the Uraeotyphlidae and Ichthyophiidae are sister taxa, (2) recover a monophyletic Ichthyophiidae, including Indian and South East Asian representatives, and (3) place the Indian caeciliid Gegeneophis ramaswamii as the sister group of the caeciliid caecilians of the Seychelles. Rough estimates of divergence times suggest an origin of the Uraeotyphlidae and Ichthyophiidae while India was isolated from Laurasia and Africa and are most consistent with an Indian origin of these families and subsequent dispersal of ichthyophiids into South East Asia
Bacillus subtilis regulatory protein GerE
GerE is the latest-acting of a series of factors which regulate gene expression in the mother cell during sporulation in Bacillus. The gene encoding GerE has been cloned from B. subtilis and overexpressed in Escherichia coli. Purified GerE has been crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol as a precipitant. The small plate-like crystals belong to the monoclinic space group C2 and diffract beyond 2.2 Angstrom resolution with a synchrotron radiation X-ray source
Ytterbium-doped tantalum pentoxide waveguides: spectroscopy for compact waveguide lasers
Ytterbium-doped materials are common gain media in high-performance laser systems. In this work, the first spectroscopic investigation of ytterbium-doped tantalum pentoxide (Yb:Ta2O5) for compact waveguide laser applications is presented
Structure of purine nucleoside phosphorylase (DeoD) from Bacillus anthracis
Protein structures from the causative agent of anthrax (Bacillus anthracis) are being determined as part of a structural genomics programme. Amongst initial candidates for crystallographic analysis are enzymes involved in nucleotide biosynthesis, since these are recognized as potential targets in antibacterial therapy. Purine nucleoside phosphorylase is a key enzyme in the purine-salvage pathway. The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis has been solved by molecular replacement at 2.24 Å resolution and refined to an R factor of 18.4%. This is the first report of a DeoD structure from a Gram-positive bacterium
- …