754 research outputs found
Semiclassical Dynamics from Zeno-Like measurements
The usual semiclassical approximation for atom-field dynamics consists in
substituting the field operators by complex numbers related to the (supposedly
large enough) intensity of the field. We show that a semiclassical evolution
for coupled systems can always be obtained by frequent Zeno-like measurements
on the state of one subsystems, independently of the field intensity in the
example given. We study the Jaynes Cummings model from this perspective
Distinct concentration-dependent molecular pathways regulate bone cell responses to cobalt and chromium exposure from joint replacement prostheses
Systemic cobalt (Co) and chromium (Cr) concentrations may be elevated in patients with metal joint replacement prostheses. Several studies have highlighted the detrimental effects of this exposure on bone cells in vitro, but the underlying mechanisms remain unclear. In this study, we use whole-genome microarrays to comprehensively assess gene expression in primary human osteoblasts, osteoclast precursors and mature resorbing osteoclasts following exposure to clinically relevant circulating versus local periprosthetic tissue concentrations of Co2+ and Cr3+ ions and CoCr nanoparticles. We also describe the gene expression response in osteoblasts on routinely used prosthesis surfaces in the presence of metal exposure. Our results suggest that systemic levels of metal exposure have no effect on osteoblasts, and primarily inhibit osteoclast differentiation and function via altering the focal adhesion and extracellular matrix interaction pathways. In contrast, periprosthetic levels of metal exposure inhibit both osteoblast and osteoclast activity by altering HIF-1α signaling and endocytic/cytoskeletal genes respectively, as well as increasing inflammatory signaling with mechanistic implications for adverse reactions to metal debris. Furthermore, we identify gene clusters and KEGG pathways for which the expression correlates with increasing Co2+:Cr3+ concentrations, and has the potential to serve as early markers of metal toxicity. Finally, our study provides a molecular basis for the improved clinical outcomes for hydroxyapatite-coated prostheses that elicit a pro-survival osteogenic gene signature compared to grit-blasted and plasma-sprayed titanium-coated surfaces in the presence of metal exposure
The effects of chronic cobalt and chromium exposure after metal-on-metal hip resurfacing: An epigenome-wide association pilot study.
Metal-on-metal (MOM) hip resurfacing has recently been a popular prosthesis choice for the treatment of symptomatic arthritis, but results in the release of cobalt and chromium ions into the circulation that can be associated with adverse clinical effects. The mechanism underlying these effects remains unclear. While chromosomal aneuploidy and translocations are associated with this exposure, the presence of subtle structural epigenetic modifications in patients with MOM joint-replacements remains unexplored. Consequently, we analysed whole blood DNA methylation in 34 OA patients with MOM hip resurfacing (MOM HR) compared to 34 OA patients with non-MOM total hip replacements (non-MOM THR), using the genome-wide Illumina HumanMethylation 450k BeadChip. No probes showed differential methylation significant at 5% false-discovery rate (FDR). We also tested association of probe methylation levels with blood chromium and cobalt levels directly; there were no significant associations at 5% FDR. Finally, we used the 'epigenetic clock' to compare estimated to actual age at sample for all individuals. We found no significant difference between MOM HR and non-MOM THR, and no correlation of age acceleration with blood metal levels. Our results suggest the absence of large methylation differences systemically following metal exposure, however, larger sample sizes will be required to identify potential small effects. Any DNA methylation changes that may occur in the local periprosthetic tissues remain to be elucidated. This article is protected by copyright. All rights reserved
A tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr(0.52)Ti(0.48)O3
The perovskite-like ferroelectric system PbZr(1-x)Ti(x)O3 (PZT) has a nearly
vertical morphotropic phase boundary (MPB) around x=0.45-0.50. Recent
synchrotron x-ray powder diffraction measurements by Noheda et al. [Appl. Phys.
Lett. 74, 2059 (1999)] have revealed a new monoclinic phase between the
previously-established tetragonal and rhombohedral regions. In the present work
we describe a Rietveld analysis of the detailed structure of the tetragonal and
monoclinic PZT phases on a sample with x= 0.48 for which the lattice parameters
are respectively: at= 4.044 A, ct= 4.138 A, at 325 K, and am= 5.721 A, bm=
5.708 A, cm= 4.138 A, beta= 90.496 deg., at 20K. In the tetragonal phase the
shifts of the atoms along the polar [001] direction are similar to those in
PbTiO3 but the refinement indicates that there are, in addition, local
disordered shifts of the Pb atoms of ~0.2 A perpendicular to the polar axis..
The monoclinic structure can be viewed as a condensation along one of the
directions of the local displacements present in the tetragonal phase. It
equally well corresponds to a freezing-out of the local displacements along one
of the directions recently reported by Corker et al.[J. Phys. Condens.
Matter 10, 6251 (1998)] for rhombohedral PZT. The monoclinic structure
therefore provides a microscopic picture of the MPB region in which one of the
"locally" monoclinic phases in the "average" rhombohedral or tetragonal
structures freezes out, and thus represents a bridge between these two phases.Comment: REVTeX, 7 figures. Modifications after referee's suggestion: new
figure (figure 5), comments in 2nd para. (Sect.III) and in 2nd & 3rd para.
(Sect. IV-a), in the abstract: "...of ~0.2 A perpendicular to the polar
axis.
Stability of the monoclinic phase in the ferroelectric perovskite PbZr(1-x)TixO3
Recent structural studies of ferroelectric PbZr(1-x)TixO3 (PZT) with x= 0.48,
have revealed a new monoclinic phase in the vicinity of the morphotropic phase
boundary (MPB), previously regarded as the the boundary separating the
rhombohedral and tetragonal regions of the PZT phase diagram. In the present
paper, the stability region of all three phases has been established from high
resolution synchrotron x-ray powder diffraction measurements on a series of
highly homogeneous samples with 0.42 <=x<= 0.52. At 20K the monoclinic phase is
stable in the range 0.46 <=x<= 0.51, and this range narrows as the temperature
is increased. A first-order phase transition from tetragonal to rhombohedral
symmetry is observed only for x= 0.45. The MPB, therefore, corresponds not to
the tetragonal-rhombohedral phase boundary, but instead to the boundary between
the tetragonal and monoclinic phases for 0.46 <=x<= 0.51. This result provides
important insight into the close relationship between the monoclinic phase and
the striking piezoelectric properties of PZT; in particular, investigations of
poled samples have shown that the monoclinic distortion is the origin of the
unusually high piezoelectric response of PZT.Comment: REVTeX file, 7 figures embedde
Observational diagnostics of gas in protoplanetary disks
Protoplanetary disks are composed primarily of gas (99% of the mass).
Nevertheless, relatively few observational constraints exist for the gas in
disks. In this review, I discuss several observational diagnostics in the UV,
optical, near-IR, mid-IR, and (sub)-mm wavelengths that have been employed to
study the gas in the disks of young stellar objects. I concentrate in
diagnostics that probe the inner 20 AU of the disk, the region where planets
are expected to form. I discuss the potential and limitations of each gas
tracer and present prospects for future research.Comment: Review written for the proceedings of the conference "Origin and
Evolution of Planets 2008", Ascona, Switzerland, June 29 - July 4, 2008. Date
manuscript: October 2008. 17 Pages, 6 graphics, 134 reference
Genome-wide association study of developmental dysplasia of the hip identifies an association with GDF5
Developmental dysplasia of the hip (DDH) is the most common skeletal developmental disease. However, its genetic architecture is poorly understood. We conduct the largest DDH genome-wide association study to date and replicate our findings in independent cohorts. We find the heritable component of DDH attributable to common genetic variants to be 55% and distributed equally across the autosomal and X-chromosomes. We identify replicating evidence for association between GDF5 promoter variation and DDH (rs143384, effect allele A, odds ratio 1.44, 95% confidence interval 1.34–1.56, P = 3.55 × 10−22). Gene-based analysis implicates GDF5 (P = 9.24 × 10−12), UQCC1 (P = 1.86 × 10−10), MMP24 (P = 3.18 × 10−9), RETSAT (P = 3.70 × 10−8) and PDRG1 (P = 1.06 × 10−7) in DDH susceptibility. We find shared genetic architecture between DDH and hip osteoarthritis, but no predictive power of osteoarthritis polygenic risk score on DDH status, underscoring the complex nature of the two traits. We report a scalable, time-efficient recruitment strategy and establish for the first time to our knowledge a robust DDH genetic association locus at GDF5
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
- …