330 research outputs found
Comparative study of physicochemical properties and antibiofilm activity of graphene oxide nanoribbons
In this article, the antibiofilm activity and physicochemical properties of graphene oxide (GO) nanoribbons, which have been among the most exciting materials, were studied by measuring the ratio of killed to alive bacteria incubated with these nanomaterials. Our objective was to determine the related physicochemical and antibiofilm properties of graphene oxide nanoribbons. We hypothesized that the physicochemical properties of
graphene oxide nanoribbons could affect their antibiofilm activity. A combination of spectroscopic and microscopic measurements of the samples allowed us to determine their physicochemical properties affecting the biofilms. Our work includes information on the surface properties of these materials related to their incubation with the biofilms.
The Fourier transform infrared spectroscopy showed the vibrations of OH groups of water molecules adsorbed on graphene oxide nanoribbons. The results show the high antibiofilm activity of the graphene oxide nanoribbons. The fluorescence confocal microscopy revealed that 50 % ± 3 % of the total number of bacteria were killed with these nanomaterials. The incubation of graphene oxide nanoribbons with bacterial biofilms resulted in the appearance of the NO2-, NO3- peaks in the negative mode mass spectrum. The attenuation of the Oand OH- peaks were attributed to the interactions of the samples with the biofilms. Our study gives more evidence of the practical value of graphene oxide nanoribbons in killing bacteria related to their surface physical properties and the potential of these nanomaterials for materials science and biomedical applications
The Asymptotics of Wilkinson's Iteration: Loss of Cubic Convergence
One of the most widely used methods for eigenvalue computation is the
iteration with Wilkinson's shift: here the shift is the eigenvalue of the
bottom principal minor closest to the corner entry. It has been a
long-standing conjecture that the rate of convergence of the algorithm is
cubic. In contrast, we show that there exist matrices for which the rate of
convergence is strictly quadratic. More precisely, let be the matrix having only two nonzero entries and let
be the set of real, symmetric tridiagonal matrices with the same spectrum
as . There exists a neighborhood of which is
invariant under Wilkinson's shift strategy with the following properties. For
, the sequence of iterates exhibits either strictly
quadratic or strictly cubic convergence to zero of the entry . In
fact, quadratic convergence occurs exactly when . Let be
the union of such quadratically convergent sequences : the set has
Hausdorff dimension 1 and is a union of disjoint arcs meeting at
, where ranges over a Cantor set.Comment: 20 pages, 8 figures. Some passages rewritten for clarit
Non-seagrass carbon contributions to seagrass sediment blue carbon
Non-seagrass sources account for ∼ 50% of the sediment organic carbon (SOC) in many seagrass beds, a fraction that may derive from external organic matter (OM) advected into the meadow and trapped by the seagrass canopy or produced in situ. If allochthonous carbon fluxes are responsible for the non-seagrass SOC in a given seagrass bed, this fraction should decrease with distance from the meadow perimeter. Identifying the spatial origin of SOC is important for closing seagrass carbon budgets and “blue carbon” offset-credit accounting, but studies have yet to quantify and map seagrass SOC stocks by carbon source. We measured sediment δ13C, δ15N, and δ34S throughout a large (6 km2), restored Zostera marina (eelgrass) meadow and applied Bayesian mixing models to quantify total SOC contributions from possible autotroph sources, Z. marina, Spartina alterniflora, and benthic microalgae (BMA). Z. marina accounted for < 40% of total meadow SOC, but we did not find evidence for outwelling from the fringing S. alterniflora salt-marsh or OM advection from bare subtidal areas. S. alterniflora SOC contributions averaged 10% at sites both inside and outside of the meadow. The BMA fraction accounted for 51% of total meadow SOC and was highest at sites furthest from the bare subtidal-meadow edge, indicative of in situ production. 210Pb profiles confirmed that meadow-enhanced sedimentation facilitates the burial of in situ BMA. Deducting this contribution from total SOC would underestimate total organic carbon fixation within the meadow. Seagrass meadows can enhance BMA burial, which likely accounts for most of the non-seagrass SOC stored in many seagrass beds
Thermodynamics of Random Ferromagnetic Antiferromagnetic Spin-1/2 Chains
Using the quantum Monte Carlo Loop algorithm, we calculate the temperature
dependence of the uniform susceptibility, the specific heat, the correlation
length, the generalized staggered susceptibility and magnetization of a
spin-1/2 chain with random antiferromagnetic and ferromagnetic couplings, down
to very low temperatures. Our data show a consistent scaling behavior in all
the quantities and support strongly the conjecture drawn from the approximate
real-space renormalization group treatment.A statistical analysis scheme is
developed which will be useful for the search of scaling behavior in numerical
and experimental data of random spin chains.Comment: 13 pages, 13 figures, RevTe
Fracture in the Elderly Multidisciplinary Rehabilitation (FEMuR):study protocol for a phase II randomised feasibility study of a multidisciplinary rehabilitation package following hip fracture [ ISRCTN22464643 ]
Background
Proximal femoral fracture is a common, major health problem in old age resulting in loss of functional independence and a high-cost burden on society, with estimated health and social care costs of £2.3 billion per year in the UK. Rehabilitation has the potential to maximise functional recovery and maintain independent living, but evidence of effectiveness is lacking. Usual rehabilitation care is delivered by a multi-disciplinary team in the hospital and in the community. An ‘enhanced rehabilitation’ intervention has been developed consisting of a workbook, goal-setting diary and extra therapy sessions, designed to improve self-efficacy and increase the amount and quality of the practice of physical exercise and activities of daily living.
Methods/design
This paper describes the design of a phase II study comprising an anonymous cohort of all proximal femoral fracture patients admitted to the three acute hospitals in Betsi Cadwaladr University Health Board over a 6-month period with a randomised feasibility study comparing the enhanced rehabilitation intervention with usual care. These will assess the feasibility of a future definitive randomised controlled trial and concurrent economic evaluation in terms of recruitment, retention, outcome measure completion, compliance with the intervention and fidelity of delivery, health service use data, willingness to be randomised and effect size for a future sample size calculation. Focus groups will provide qualitative data to contribute to the assessment of the acceptability of the intervention amongst patients, carers and rehabilitation professionals and the feasibility of delivering the planned intervention. The primary outcome measure is function assessed by the Barthel Index. Secondary outcomes measure the ability to perform activities of daily living, anxiety and depression, potential mediators of outcomes such as hip pain, self-efficacy and fear of falling, health utility, health service use, objectively assessed physical function and adverse events. Participants’ preference for rehabilitation services will be assessed in a discrete choice experiment.
Discussion
Phase II studies are an opportunity to not only assess the feasibility of trial methods but also to compare different methods of outcome measurement and novel methods of obtaining health service use data from routinely collected patient information.
Trial registration
Current Controlled Trials ISRCTN22464643, UKCRN16677
Random Exchange Quantum Heisenberg Chains
The one-dimensional quantum Heisenberg model with random bonds is
studied for and . The specific heat and the zero-field
susceptibility are calculated by using high-temperature series expansions and
quantum transfer matrix method. The susceptibility shows a Curie-like
temperature dependence at low temperatures as well as at high temperatures. The
numerical results for the specific heat suggest that there are anomalously many
low-lying excitations. The qualitative nature of these excitations is discussed
based on the exact diagonalization of finite size systems.Comment: 13 pages, RevTex, 12 figures available on request ([email protected]
Lung disease phenotypes caused by overexpression of combinations of α-, β-, and γ-subunits of the epithelial sodium channel in mouse airways
The epithelial Na+ channel (ENaC) regulates airway surface hydration. In mouse airways, ENaC is composed of three subunits, α, β, and γ, which are differentially expressed (α > β > γ). Airway-targeted overexpression of the β subunit results in Na+ hyperabsorption, causing airway surface dehydration, hyperconcentrated mucus with delayed clearance, lung inflammation, and perinatal mortality. Notably, mice overexpressing the α- or γ-subunit do not exhibit airway Na+ hyperabsorption or lung pathology. To test whether overexpression of multiple ENaC subunits produced Na+ transport and disease severity exceeding that of βENaC-Tg mice, we generated double (αβ, αγ, βγ) and triple (αβγ) transgenic mice and characterized their lung phenotypes. Double αγENaC-Tg mice were indistinguishable from WT littermates. In contrast, double βγENaC-Tg mice exhibited airway Na+ absorption greater than that of βENaC-Tg mice, which was paralleled by worse survival, decreased mucociliary clearance, and more severe lung pathology. Double αβENaC-Tg mice exhibited Na+ transport rates comparable to those of βENaC-Tg littermates. However, αβENaC-Tg mice had poorer survival and developed severe parenchymal consolidation. In situ hybridization (RNAscope) analysis revealed both alveolar and airway αENaC-Tg overexpression. Triple αβγENaC-Tg mice were born in Mendelian proportions but died within the first day of life, and the small sample size prevented analyses of cause(s) of death. Cumulatively, these results indicate that overexpression of βENaC is rate limiting for generation of pathological airway surface dehydration. Notably, airway co-overexpression of β- and γENaC had additive effects on Na+ transport and disease severity, suggesting dose dependency of these two variables
Role of spdef in the regulation of muc5b expression in the airways of naive and mucoobstructed mice
Understanding how expression of airway secretory mucins MUC5B and MUC5AC is regulated in health and disease is important to elucidating the pathogenesis of mucoobstructive respiratory diseases. The transcription factor SPDEF (sterile a-motif pointed domain epithelial specific transcription factor) is a key regulator of MUC5AC, but its role in regulating MUC5B in health and in mucoobstructive lung diseases is unknown. Characterization of Spdef-deficient mice upper and lower airways demonstrated region-specific, Spdef-dependent regulation of basal Muc5b expression. Neonatal Spdef-deficient mice exhibited reductions in BAL Muc5ac and Muc5b. Adult Spdef-deficient mice partially phenocopied Muc5b-deficient mice as they exhibited reduced Muc5b in nasopharyngeal and airway epithelia but not in olfactory Bowman glands, 75% incidence of nasopharyngeal hair/mucus plugs, and mild bacterial otitis media, without defective mucociliary clearance in the nasopharynx. In contrast, tracheal mucociliary clearance was reduced in Spdef-deficient mice in the absence of lung disease. To evaluate the role of Spdef in the development and persistence of Muc5b-predominant mucoobstructive lung disease, Spdef-deficient mice were crossed with Scnn1b-transgenic (Scnn1b-Tg) mice, which exhibit airway surface dehydration-induced airway mucus obstruction and inflammation. Spdef-deficient Scnn1b-Tg mice exhibited reduced Muc5ac, but not Muc5b, expression and BAL content. Airway mucus obstruction was not decreased in Spdef-deficient Scnn1b-Tg mice, consistent with Muc5b-dominant Scnn1b disease, but increased airway neutrophilia was observed compared with Spdef-sufficient Scnn1b-Tg mice. Collectively, these results indicate that Spdef regulates baseline Muc5b expression in respiratory epithelia but does not contribute to Muc5b regulation in a mouse model of Muc5b-predominant mucus obstruction caused by airway dehydration
An EBSD study of the deformation of service-aged 316 austenitic steel
Electron backscatter diffraction (EBSD) has been used to examine the plastic deformation of an ex-service 316 austenitic stainless steel at 297K and 823K (24 °C and 550 °C)at strain rates 3.5x10-3 to 4 x 10-7 s-1. The distribution of local misorientations was found to depend on the imposed plastic strain following a lognormal distribution at true strains 0.1. At 823 K (550 °C), the distribution of misorientations depended on the applied strain rate. The evolution of lattice misorientations with increasing plastic strain up to 0.23 was quantified using the metrics kernel average misorientation, average intragrain misorientation, and low angle misorientation fraction. For strain rate down to 10-5 s-1 all metrics were insensitive to deformation temperature, mode (tension vs. compression) and orientation of the measurement plane. The strain sensitivity of the different metrics was found to depend on the misorientation ranges considered in their calculation. A simple new metric, proportion of undeformed grains, is proposed for assessing strain in both aged and unaged material. Lattice misorientations build up with strain faster in aged steel than in un-aged material and most of the metrics were sensitive to the effects of thermal aging. Ignoring aging effects leads to significant overestimation of the strains around welds. The EBSD results were compared with nanohardness measurements and good agreement established between the two techniques of assessing plastic strain in aged 316 steel
- …