20,227 research outputs found
Comparing the correlation length of grain markets in China and France
In economics comparative analysis plays the same role as experimental
research in physics. In this paper we closely examine several methodological
problems related to comparative analysis by investigating the specific example
of grain markets in China and France respectively. This enables us to answer a
question in economic history which has so far remained pending, namely whether
or not market integration progressed in the 18th century. In economics as in
physics, before being accepted any new result has to be checked and re-checked
by different researchers. This is what we call the replication and comparison
procedures. We show how these procedures should (and can) be implemented.Comment: 16 pages, 7 figures, to appear in International Journal of Modern
Physics
The tidal stripping of satellites
We present an improved analytic calculation for the tidal radius of
satellites and test our results against N-body simulations.
The tidal radius in general depends upon four factors: the potential of the
host galaxy, the potential of the satellite, the orbit of the satellite and
{\it the orbit of the star within the satellite}. We demonstrate that this last
point is critical and suggest using {\it three tidal radii} to cover the range
of orbits of stars within the satellite. In this way we show explicitly that
prograde star orbits will be more easily stripped than radial orbits; while
radial orbits are more easily stripped than retrograde ones. This result has
previously been established by several authors numerically, but can now be
understood analytically. For point mass, power-law (which includes the
isothermal sphere), and a restricted class of split power law potentials our
solution is fully analytic. For more general potentials, we provide an equation
which may be rapidly solved numerically. Over short times (\simlt 1-2 Gyrs
satellite orbit), we find excellent agreement between our analytic and
numerical models. Over longer times, star orbits within the satellite are
transformed by the tidal field of the host galaxy. In a Hubble time, this
causes a convergence of the three limiting tidal radii towards the prograde
stripping radius. Beyond the prograde stripping radius, the velocity dispersion
will be tangentially anisotropic.Comment: 10 pages, 5 figures. Final version accepted for publication in MNRAS.
Some new fully analytic tidal radii have been added for power law density
profiles (including the isothermal sphere) and some split power law
The Dielectric Constant and Specific Conductance of Liquid Hydrogen Sulphide at 194.5° K
The following values have been reported for the specific conductance of liquid hydrogen sulphide.
0.1x10-6 ohm-1 cm3 - a-c method - Steel, Mcintosh & Archibald;
less than 4x10-7 ohm-1 cm3 - d.c. method - Magri;
1x10-11 ohm-1 cm3 - d.c. method - Quam & Wilkinson;
3.7x10-11 ohm-1 cm3 - d.c. method - Satwaleker, Butler & Wilkinson
Magnetic Dipole Absorption of Radiation in Small Conducting Particles
We give a theoretical treatment of magnetic dipole absorption of
electromagnetic radiation in small conducting particles, at photon energies
which are large compared to the single particle level spacing, and small
compared to the plasma frequency. We discuss both diffusive and ballistic
electron dynamics for particles of arbitrary shape.
The conductivity becomes non-local when the frequency is smaller than the
frequency \omega_c characterising the transit of electrons from one side of the
particle to the other, but in the diffusive case \omega_c plays no role in
determining the absorption coefficient. In the ballistic case, the absorption
coefficient is proportional to \omega^2 for \omega << \omega_c, but is a
decreasing function of \omega for \omega >> \omega_c.Comment: 25 pages of plain TeX, 2 postscipt figure
The kink Casimir energy in a lattice sine-Gordon model
The Casimir energy of quantum fluctuations about the classical kink
configuration is computed numerically for a recently proposed lattice
sine-Gordon model. This energy depends periodically on the kink position and is
found to be approximately sinusoidal.Comment: 10 pages, 4 postscript figure
Cores and Cusps in the Dwarf Spheroidals
We consider the problem of determining the structure of the dark halo of
nearby dwarf spheroidal galaxies (dSphs) from the spherical Jeans equations.
Whether the dark halos are cusped or cored at the centre is an important
strategic problem in modern astronomy. The observational data comprise the
line-of-sight velocity dispersion of a luminous tracer population. We show that
when such data are analysed to find the dark matter density with the spherical
Poisson and Jeans equations, then the generic solution is a dark halo density
that is cusped like an isothermal. Although milder cusps (like the
Navarro-Frenk-White 1/r cusp and even cores are possible, they are not generic.
Such solutions exist only if the anisotropy parameter beta and the logarithmic
slope of the stellar density gamma satisfy the constraint gamma = 2 x beta at
the centre or if the radial velocity dispersion falls to zero at the centre.
This surprisingly strong statement is really a consequence of the assumption of
spherical symmetry, and the consequent coordinate singularity at the origin.
So, for example, a dSph with an exponential light profile can exist in
Navarro-Frenk- White halo and have a flat velocity dispersion, but anisotropy
in general drives the dark halo solution to an isothermal cusp. The identified
cusp or core is therefore a consequence of the assumptions (particularly of
spherical symmetry and isotropy), and not the data.Comment: MNRAS, in pres
Colliding Particles in Highly Turbulent Flows
We discuss relative velocities and the collision rate of small particles
suspended in a highly turbulent fluid. In the limit where the viscous damping
is very weak, we estimate the relative velocities using the Kolmogorov cascade
principle.Comment: 5 pages, no figures, v2 contains additional result
Graphics for uncertainty
Graphical methods such as colour shading and animation, which are widely available, can be very effective in communicating uncertainty. In particular, the idea of a ‘density strip’ provides a conceptually simple representation of a distribution and this is explored in a variety of settings, including a comparison of means, regression and models for contingency tables. Animation is also a very useful device for exploring uncertainty and this is explored particularly in the context of flexible models, expressed in curves and surfaces whose structure is of particular interest. Animation can further provide a helpful mechanism for exploring data in several dimensions. This is explored in the simple but very important setting of spatiotemporal data
Chemical Evolution in the Carina Dwarf Spheroidal
We present metallicities for 487 red giants in the Carina dwarf spheroidal
(dSph) galaxy that were obtained from FLAMES low-resolution Ca triplet (CaT)
spectroscopy. We find a mean [Fe/H] of -1.91 dex with an intrinsic dispersion
of 0.25 dex, whereas the full spread in metallicities is at least one dex. The
analysis of the radial distribution of metallicities reveals that an excess of
metal poor stars resides in a region of larger axis distances. These results
can constrain evolutionary models and are discussed in the context of chemical
evolution in the Carina dSph.Comment: 3 pages, 2 figures, to be published in the proceedings of the
ESO/Arcetri-workshop on "Chemical Abundances and Mixing in Stars", 13.-17.
Sep. 2004, Castiglione della Pescaia, Italy, L. Pasquini, S. Randich (eds.
- …