19,267 research outputs found

    Oxygen Moment Formation and Canting in Li2CuO2

    Full text link
    The possibilities of oxygen moment formation and canting in the quasi-1D cuprate Li2CuO2 are investigated using single crystal neutron diffraction at 2 K. The observed magnetic intensities could not be explained without the inclusion of a large ordered oxygen moment of 0.11(1) Bohr magnetons. Least-squares refinement of the magnetic structure of Li2CuO2 in combination with a spin-density Patterson analysis shows that the magnetization densities of the Cu and O atoms are highly aspherical, forming quasi-1D ribbons of localised Cu and O moments. Magnetic structure refinements and low-field magnetization measurements both suggest that the magnetic structure of Li2CuO2 at 2 K may be canted. A possible model for the canted configuration is proposed.Comment: 10 pages, 8 figures (screen resolution

    A new method for ranking academic journals in accounting and finance

    Get PDF
    Given the many and varied uses to which journal rankings are put, interest in ranking journal 'quality' is likely to persist. Unfortunately, existing methods of constructing such rankings all have inherent limitations. This paper proposes a new (complementary) approach, based on submissions to RAE 2001, which is not restricted to a pre-defined journal set and, importantly, is based on quality choice decisions driven by economic incentives. For three metrics, submissions to RAE 2001 are compared with the available set of publications to provide evidence on the perception of journal quality, a fourth metric is based on the overall RAE grades, and an overall ranking is produced

    Phase--coherence Effects in Antidot Lattices: A Semiclassical Approach to Bulk Conductivity

    Full text link
    We derive semiclassical expressions for the Kubo conductivity tensor. Within our approach the oscillatory parts of the diagonal and Hall conductivity are given as sums over contributions from classical periodic orbits in close relation to Gutzwiller's trace formula for the density of states. Taking into account the effects of weak disorder and temperature we reproduce recently observed anomalous phase coherence oscillations in the conductivity of large antidot arrays.Comment: 11 pages, 2 figures available under request, RevTe

    Design and performance of the muon monitor for the T2K neutrino oscillation experiment

    Full text link
    This article describes the design and performance of the muon monitor for the T2K (Tokaito-Kamioka) long baseline neutrino oscillation experiment. The muon monitor consists of two types of detector arrays: ionization chambers and silicon PIN photodiodes. It measures the intensity and profile of muons produced, along with neutrinos, in the decay of pions. The measurement is sensitive to the intensity and direction of the neutrino beam. The linearity and stability of the detectors were measured in beam tests to be within 2.4% and 1.5%, respectively. Based on the test results, the precision of the beam direction measured by the muon monitor is expected to be 0.25 mrad.Comment: 22 page

    Tunneling Mechanism due to Chaos in a Complex Phase Space

    Get PDF
    We have revealed that the barrier-tunneling process in non-integrable systems is strongly linked to chaos in complex phase space by investigating a simple scattering map model. The semiclassical wavefunction reproduces complicated features of tunneling perfectly and it enables us to solve all the reasons why those features appear in spite of absence of chaos on the real plane. Multi-generation structure of manifolds, which is the manifestation of complex-domain homoclinic entanglement created by complexified classical dynamics, allows a symbolic coding and it is used as a guiding principle to extract dominant complex trajectories from all the semiclassical candidates.Comment: 4 pages, RevTeX, 6 figures, to appear in Phys. Rev.

    Critical behaviour of the 1D q-state Potts model with long-range interactions

    Full text link
    The critical behaviour of the one-dimensional q-state Potts model with long-range interactions decaying with distance r as r(1+σ)r^{-(1+\sigma)} has been studied in the wide range of parameters 0<σ10 < \sigma \le 1 and 116q64\frac{1}{16} \le q \le 64. A transfer matrix has been constructed for a truncated range of interactions for integer and continuous q, and finite range scaling has been applied. Results for the phase diagram and the correlation length critical exponent are presented.Comment: 20 pages plus 4 figures, Late

    Correlation Functions of Complex Matrix Models

    Full text link
    For a restricted class of potentials (harmonic+Gaussian potentials), we express the resolvent integral for the correlation functions of simple traces of powers of complex matrices of size NN, in term of a determinant; this determinant is function of four kernels constructed from the orthogonal polynomials corresponding to the potential and from their Cauchy transform. The correlation functions are a sum of expressions attached to a set of fully packed oriented loops configurations; for rotational invariant systems, explicit expressions can be written for each configuration and more specifically for the Gaussian potential, we obtain the large NN expansion ('t Hooft expansion) and the so-called BMN limit.Comment: latex BMN.tex, 7 files, 6 figures, 30 pages (v2 for spelling mistake and added reference) [http://www-spht.cea.fr/articles/T05/174

    Signatures of unstable semiclassical trajectories in tunneling

    Full text link
    It was found recently that processes of multidimensional tunneling are generally described at high energies by unstable semiclassical trajectories. We study two observational signatures related to the instability of trajectories. First, we find an additional power-law dependence of the tunneling probability on the semiclassical parameter as compared to the standard case of potential tunneling. The second signature is substantial widening of the probability distribution over final-state quantum numbers. These effects are studied using modified semiclassical technique which incorporates stabilization of the tunneling trajectories. The technique is derived from first principles. We obtain expressions for the inclusive and exclusive tunneling probabilities in the case of unstable semiclassical trajectories. We also investigate the "phase transition" between the cases of stable and unstable trajectories across certain "critical" value of energy. Finally, we derive the relation between the semiclassical probabilities of tunneling from the low-lying and highly excited initial states. This puts on firm ground a conjecture made previously in the semiclassical description of collision-induced tunneling in field theory.Comment: Journal version; 48 pages, 16 figure

    Current noise of a superconducting single electron transistor coupled to a resonator

    Full text link
    We analyze the current and zero-frequency current noise properties of a superconducting single electron resonator (SSET) coupled to a resonator, focusing on the regime where the SSET is operated in the vicinity of the Josephson quasiparticle resonance. We consider a range of coupling strengths and resonator frequencies to reflect the fact that in practice the system can be tuned to quite a high degree with the resonator formed either by a nanomechanical oscillator or a superconducting stripline fabricated in close proximity to the SSET. For very weak couplings the SSET acts on the resonator like an effective thermal bath. In this regime the current characteristics of the SSET are only weakly modified by the resonator. Using a mean field approach, we show that the current noise is nevertheless very sensitive to the correlations between the resonator and the SSET charge. For stronger couplings, the SSET can drive the resonator into limit cycle states where self-sustained oscillation occurs and we find that regions of well-defined bistability exist. Dynamical transitions into and out of the limit cycle state are marked by strong fluctuations in the resonator energy, but these fluctuations are suppressed within the limit cycle state. We find that the current noise of the SSET is strongly influenced by the fluctuations in the resonator energy and hence should provide a useful indicator of the resonator's dynamics.Comment: Reduced quality figures for arXiv version; v2 minor correction
    corecore