19,267 research outputs found
Oxygen Moment Formation and Canting in Li2CuO2
The possibilities of oxygen moment formation and canting in the quasi-1D
cuprate Li2CuO2 are investigated using single crystal neutron diffraction at 2
K. The observed magnetic intensities could not be explained without the
inclusion of a large ordered oxygen moment of 0.11(1) Bohr magnetons.
Least-squares refinement of the magnetic structure of Li2CuO2 in combination
with a spin-density Patterson analysis shows that the magnetization densities
of the Cu and O atoms are highly aspherical, forming quasi-1D ribbons of
localised Cu and O moments. Magnetic structure refinements and low-field
magnetization measurements both suggest that the magnetic structure of Li2CuO2
at 2 K may be canted. A possible model for the canted configuration is
proposed.Comment: 10 pages, 8 figures (screen resolution
A new method for ranking academic journals in accounting and finance
Given the many and varied uses to which journal rankings are put, interest in ranking journal 'quality' is likely to persist. Unfortunately, existing methods of constructing such rankings all have inherent limitations. This paper proposes a new (complementary) approach, based on submissions to RAE 2001, which is not restricted to a pre-defined journal set and, importantly, is based on quality choice decisions driven by economic incentives. For three metrics, submissions to RAE 2001 are compared with the available set of publications to provide evidence on the perception of journal quality, a fourth metric is based on the overall RAE grades, and an overall ranking is produced
Phase--coherence Effects in Antidot Lattices: A Semiclassical Approach to Bulk Conductivity
We derive semiclassical expressions for the Kubo conductivity tensor. Within
our approach the oscillatory parts of the diagonal and Hall conductivity are
given as sums over contributions from classical periodic orbits in close
relation to Gutzwiller's trace formula for the density of states. Taking into
account the effects of weak disorder and temperature we reproduce recently
observed anomalous phase coherence oscillations in the conductivity of large
antidot arrays.Comment: 11 pages, 2 figures available under request, RevTe
Design and performance of the muon monitor for the T2K neutrino oscillation experiment
This article describes the design and performance of the muon monitor for the
T2K (Tokaito-Kamioka) long baseline neutrino oscillation experiment. The muon
monitor consists of two types of detector arrays: ionization chambers and
silicon PIN photodiodes. It measures the intensity and profile of muons
produced, along with neutrinos, in the decay of pions. The measurement is
sensitive to the intensity and direction of the neutrino beam. The linearity
and stability of the detectors were measured in beam tests to be within 2.4%
and 1.5%, respectively. Based on the test results, the precision of the beam
direction measured by the muon monitor is expected to be 0.25 mrad.Comment: 22 page
Tunneling Mechanism due to Chaos in a Complex Phase Space
We have revealed that the barrier-tunneling process in non-integrable systems
is strongly linked to chaos in complex phase space by investigating a simple
scattering map model. The semiclassical wavefunction reproduces complicated
features of tunneling perfectly and it enables us to solve all the reasons why
those features appear in spite of absence of chaos on the real plane.
Multi-generation structure of manifolds, which is the manifestation of
complex-domain homoclinic entanglement created by complexified classical
dynamics, allows a symbolic coding and it is used as a guiding principle to
extract dominant complex trajectories from all the semiclassical candidates.Comment: 4 pages, RevTeX, 6 figures, to appear in Phys. Rev.
Critical behaviour of the 1D q-state Potts model with long-range interactions
The critical behaviour of the one-dimensional q-state Potts model with
long-range interactions decaying with distance r as has been
studied in the wide range of parameters and . A transfer matrix has been constructed for a truncated range of
interactions for integer and continuous q, and finite range scaling has been
applied. Results for the phase diagram and the correlation length critical
exponent are presented.Comment: 20 pages plus 4 figures, Late
Correlation Functions of Complex Matrix Models
For a restricted class of potentials (harmonic+Gaussian potentials), we
express the resolvent integral for the correlation functions of simple traces
of powers of complex matrices of size , in term of a determinant; this
determinant is function of four kernels constructed from the orthogonal
polynomials corresponding to the potential and from their Cauchy transform. The
correlation functions are a sum of expressions attached to a set of fully
packed oriented loops configurations; for rotational invariant systems,
explicit expressions can be written for each configuration and more
specifically for the Gaussian potential, we obtain the large expansion ('t
Hooft expansion) and the so-called BMN limit.Comment: latex BMN.tex, 7 files, 6 figures, 30 pages (v2 for spelling mistake
and added reference) [http://www-spht.cea.fr/articles/T05/174
Signatures of unstable semiclassical trajectories in tunneling
It was found recently that processes of multidimensional tunneling are
generally described at high energies by unstable semiclassical trajectories. We
study two observational signatures related to the instability of trajectories.
First, we find an additional power-law dependence of the tunneling probability
on the semiclassical parameter as compared to the standard case of potential
tunneling. The second signature is substantial widening of the probability
distribution over final-state quantum numbers. These effects are studied using
modified semiclassical technique which incorporates stabilization of the
tunneling trajectories. The technique is derived from first principles. We
obtain expressions for the inclusive and exclusive tunneling probabilities in
the case of unstable semiclassical trajectories. We also investigate the "phase
transition" between the cases of stable and unstable trajectories across
certain "critical" value of energy. Finally, we derive the relation between the
semiclassical probabilities of tunneling from the low-lying and highly excited
initial states. This puts on firm ground a conjecture made previously in the
semiclassical description of collision-induced tunneling in field theory.Comment: Journal version; 48 pages, 16 figure
Current noise of a superconducting single electron transistor coupled to a resonator
We analyze the current and zero-frequency current noise properties of a
superconducting single electron resonator (SSET) coupled to a resonator,
focusing on the regime where the SSET is operated in the vicinity of the
Josephson quasiparticle resonance. We consider a range of coupling strengths
and resonator frequencies to reflect the fact that in practice the system can
be tuned to quite a high degree with the resonator formed either by a
nanomechanical oscillator or a superconducting stripline fabricated in close
proximity to the SSET. For very weak couplings the SSET acts on the resonator
like an effective thermal bath. In this regime the current characteristics of
the SSET are only weakly modified by the resonator. Using a mean field
approach, we show that the current noise is nevertheless very sensitive to the
correlations between the resonator and the SSET charge. For stronger couplings,
the SSET can drive the resonator into limit cycle states where self-sustained
oscillation occurs and we find that regions of well-defined bistability exist.
Dynamical transitions into and out of the limit cycle state are marked by
strong fluctuations in the resonator energy, but these fluctuations are
suppressed within the limit cycle state. We find that the current noise of the
SSET is strongly influenced by the fluctuations in the resonator energy and
hence should provide a useful indicator of the resonator's dynamics.Comment: Reduced quality figures for arXiv version; v2 minor correction
- …