3,084 research outputs found
Latitudinal Diversity Gradients in Free-living Microorganisms - Hoogenraadia a Key Genus in Testate Amoebae Biogeography
The extent to which free-living microorganisms show cosmopolitan distributions has been a contentious aspect of microbial ecol¬ogy over the last few decades. Testate amoebae are a group of free living protists that can provide important evidence for the nature of the biogeography of microorganisms because there are relatively good data on the distribution of their morpho-species (compared to many other microbial groups). Many testate amoebae appear to exhibit ubiquitous distributions, while some taxa have proven to be endemic to limited regions. The genus Hoogenraadia (Gauthier-Lièvre and Thomas 1958) is of particular interest in this context as it appears to be restricted to relatively low latitudes. There are six described species of the genus: H. africana Gauthier-Lièvre and Thomas 1958, H. asiatica Wang and Min 1987, H. cryptostoma Gauthier-Lièvre and Thomas 1958, H. humicola Bonnet 1976, H. ovata Bonnet 1976, and H. sylvatica Vucetich 1974. However, information on these taxa is scattered through a number of different papers – here we provide a summary of what is known about the taxonomy and ecology of this genus. We also reinterpret recent new records of putative H. africana from China (suggesting this identification is not reliable). As an example of a protist taxon largely restricted to the tropics this genus is of particular interest in microbial biogeography and this paper discusses its morphology, ecology and distribution in this context
Gaian bottlenecks and planetary habitability maintained by evolving model biospheres: The ExoGaia model
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.The search for habitable exoplanets inspires the question - how do habitable planets form? Planet habitability models traditionally focus on abiotic processes and neglect a biotic response to changing conditions on an inhabited planet. The Gaia hypothesis postulates that life influences the Earth's feedback mechanisms to form a self-regulating system, and hence that life can maintain habitable conditions on its host planet. If life has a strong influence, it will have a role in determining a planet's habitability over time. We present the ExoGaia model - a model of simple 'planets' host to evolving microbial biospheres. Microbes interact with their host planet via consumption and excretion of atmospheric chemicals. Model planets orbit a 'star' which provides incoming radiation, and atmospheric chemicals have either an albedo, or a heat-trapping property. Planetary temperatures can therefore be altered by microbes via their metabolisms. We seed multiple model planets with life while their atmospheres are still forming and find that the microbial biospheres are, under suitable conditions, generally able to prevent the host planets from reaching inhospitable temperatures, as would happen on a lifeless planet. We find that the underlying geochemistry plays a strong role in determining long-term habitability prospects of a planet. We find five distinct classes of model planets, including clear examples of 'Gaian bottlenecks' - a phenomenon whereby life either rapidly goes extinct leaving an inhospitable planet, or survives indefinitely maintaining planetary habitability. These results suggest that life might play a crucial role in determining the long-term habitability of planets.We thank the Gaia Charity and the University of Exeter for their support of this work
Alternative mechanisms for Gaia
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordA long-standing objection to the Gaia hypothesis has been a perceived lack of plausible mechanisms by which life on Earth could come to regulate its abiotic environment. A null hypothesis is survival by pure chance, by which any appearance of regulation on Earth is illusory and the persistence of life simply reflects the weak anthropic principle - it must have occurred for intelligent observers to ask the question. Recent work has proposed that persistence alone increases the chance that a biosphere will acquire further persistence-enhancing properties. Here we use a simple quantitative model to show that such ‘selection by survival alone’ can indeed increase the probability that a biosphere will persist in the future, relative to a baseline of pure chance. Adding environmental feedback to this model shows either an increased or decreased survival probability depending on the initial conditions. Feedback can hinder early life becoming established if initial conditions are poor, but feedback can also prevent systems from diverging too far from optimum environmental conditions and thus increase survival rates. The outstanding question remains the relative importance of each mechanism for the historical and continued persistence of life on Earth.Gaia CharityUniversity of Exete
Multiple states of environmental regulation in well-mixed model biospheres.
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The Gaia hypothesis postulates that life influences Earth's feedback mechanisms to form a self regulating system. This provokes the question: how can global self-regulation evolve? Most models demonstrating environmental regulation involving life have relied on alignment between local selection and global regulation. In these models environment-improving individuals or communities spread to outcompete environment degrading individuals/communities, leading to global regulation, but this depends on local differences in environmental conditions. In contrast, well-mixed components of the Earth system, such as the atmosphere, lack local environmental differentiation. These previous models do not explain how global regulation can emerge in a system with no well defined local environment, or where the local environment is overwhelmed by global effects. We present a model of self-regulation by 'microbes' in an environment with no spatial structure. These microbes affect an abiotic 'temperature' as a byproduct of metabolism. We demonstrate that global self-regulation can arise in the absence of spatial structure in a diverse ecosystem without localised environmental effects. We find that systems can exhibit nutrient limitation and two temperature limitation regimes where the temperature is maintained at a near constant value. During temperature regulation, the total temperature change caused by the microbes is kept near constant by the total population expanding or contracting to absorb the impacts of new mutants on the average affect on the temperature per microbe. Dramatic shifts between low temperature regulation and high temperature regulation can occur when a mutant arises that causes the sign of the temperature effect to change. This result implies that self-regulating feedback loops can arise without the need for spatial structure, weakening criticisms of the Gaia hypothesis that state that with just one Earth, global regulation has no mechanism for developing because natural selection requires selection between multiple entities.We thank the Gaia Charity and the University of Exeter for their support of this work
Multiple states of environmental regulation in well-mixed modle biospheres.
The Gaia hypothesis postulates that life influences Earth’s feedback mechanisms to form a self-regulating system. This provokes the question: how can global self-regulation evolve? Most models demonstrating environmental regulation involving life have relied on alignment between local selection and global regulation. In these models environment-improving individuals or communities spread to outcompete environment degrading individuals / communities, leading to global regulation, but this depends on local differences in environmental conditions. In contrast, well-mixed components of the Earth system, such as the atmosphere, lack local environmental differentiation. These previous models do not explain how global regulation can emerge in a system with no well-defined local environment, or where the local environment is overwhelmed by global effects. We present a model of self-regulation by ‘microbes’ in an environment with no spatial structure. These microbes affect an abiotic ‘temperature’ as a byproduct of metabolism.
We demonstrate that global self-regulation can arise in the absence of spatial structure in a diverse ecosystem without localised environmental effects. We find that systems can exhibit nutrient limitation and two temperature limitation regimes where the temperature is maintained at a near constant value. During temperature regulation, the total temperature change caused by the microbes is kept near constant by the total population expanding or contracting to absorb the impacts of new mutants on the average affect on the temperature per microbe. Dramatic shifts between low temperature regulation and high temperature regulation can occur when a mutant arises that causes the sign of the temperature effect to change. This result implies that self-regulating feedback loops can arise without the need for spatial structure, weakening criticisms of the Gaia hypothesis that state that with just one Earth, global regulation has no mechanism for developing because natural selection requires selection between multiple entitie
Selection for Gaia across multiple scales
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Recently postulated mechanisms and models can help explain the enduring ‘Gaia’ puzzle of environmental regulation mediated by life. Natural selection can produce nutrient recycling at local scales and regulation of heterogeneous environmental variables at ecosystem scales. However, global-scale environmental regulation involves a temporal and spatial decoupling of effects from actors that makes conventional evolutionary explanations problematic. Instead, global regulation can emerge by a process of ‘sequential selection’ in which systems that destabilize their environment are short-lived and result in extinctions and reorganizations until a stable attractor is found. Such persistence-enhancing properties can in turn increase the likelihood of acquiring further persistence-enhancing properties through ‘selection by survival alone’. Thus, Earth system feedbacks provide a filter for persistent combinations of macroevolutionary innovations.T.M.L.
was supported by a Royal Society Wolfson Research Merit Award. A.E.N. was supported by
Gaia Charity and the University of Exeter
Soil microorganisms behave like macroscopic organisms: patterns in the global distribution of soil euglyphid testate amoeba
Aim:
Patterns of α- and β-diversity of soil protist communities and the factors that shape them remain largely unknown. We undertook a world-wide survey of forest litter to investigate the patterns of diversity in a group of testate amoebae. We aimed to assess: (1) whether there is a latitudinal gradient in α-diversity, and (2) whether β-diversity was correlated solely with environmental factors commonly used in soil biology research or if it was also independently explained by geographical barriers.
Location: World-wide.
Methods:
We studied the diversity of Euglyphida, a common group of testate amoebae, in 35 samples of forest litter and moss samples from a global survey, using small subunit rRNA gene sequences. We assessed the relationship between sample α-diversity and latitude using generalized additive models (GAM). Furthermore, we determined the relationships between community composition and geographical models (distance-based Moran's Eigenvector Maps – db-MEM) using Generalized UniFrac distances (GUniFrac). We also investigated the relationship between individual measured soil parameters, WorldClim data and diversity (alpha plus beta) using both raw data and synthetic variables obtained through principal components analysis.
Results:
We recorded 245 phylotypes belonging to 6 out of 7 known Euglyphida families, plus four novel deep clades. Euglyphid α-diversity was positively correlated with temperature and negatively with latitude and litter C/N ratio. Euglyphida community structure was correlated with the spatial eigenvector Db-MEM31, independently of all measured environmental variables. Db-MEM31 corresponds to a natural barrier constituted by the Northern Hemisphere desert belt. Beta diversity was correlated with other environmental variables, such as pH, isothermality and temperature in the coldest month of the year.
Main conclusions:
Soil euglyphid α-diversity displays a latitudinal gradient, and β-diversity is not only correlated with climatic and physicochemical parameters but also with geographical barriers. Such patterns of diversity were until recently believed to be characteristic only for macroscopic organisms
No Detectable Fertility Benefit from a Single Additional Mating in Wild Stalk-Eyed Flies
Background: Multiple mating by female insects is widespread, and the explanation(s) for repeated mating by females has been the subject of much discussion. Females may profit from mating multiply through direct material benefits that increase their own reproductive output, or indirect genetic benefits that increase offspring fitness. One particular direct benefit that has attracted significant attention is that of fertility assurance, as females often need to mate multiply to achieve high fertility. This hypothesis has never been tested in a wild insect population.Methodology/Principal Findings: Female Malaysian stalk-eyed flies (Teleopsis dalmanni) mate repeatedly during their lifetime, and have been shown to be sperm limited under both laboratory and field conditions. Here we ask whether receiving an additional mating alleviates sperm limitation in wild females. In our experiment one group of females received a single additional mating, while a control group received an interrupted, and therefore unsuccessful, mating. Females that received an additional mating did not lay more fertilised eggs in total, nor did they lay proportionately more fertilised eggs. Female fertility declined significantly through time, demonstrating that females were sperm limited. However, receipt of an additional mating did not significantly alter the rate of this decline.Conclusions/Significance: Our data suggest that the fertility consequences of a single additional mating were small. We discuss this effect (or lack thereof), and suggest that it is likely to be attributed to small ejaculate size, a high proportion of failed copulations, and the presence of X-linked meiotic drive in this species
A Upf3b-mutant mouse model with behavioral and neurogenesis defects.
Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA degradation pathway that acts on RNAs terminating their reading frames in specific contexts. NMD is regulated in a tissue-specific and developmentally controlled manner, raising the possibility that it influences developmental events. Indeed, loss or depletion of NMD factors have been shown to disrupt developmental events in organisms spanning the phylogenetic scale. In humans, mutations in the NMD factor gene, UPF3B, cause intellectual disability (ID) and are strongly associated with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and schizophrenia (SCZ). Here, we report the generation and characterization of mice harboring a null Upf3b allele. These Upf3b-null mice exhibit deficits in fear-conditioned learning, but not spatial learning. Upf3b-null mice also have a profound defect in prepulse inhibition (PPI), a measure of sensorimotor gating commonly deficient in individuals with SCZ and other brain disorders. Consistent with both their PPI and learning defects, cortical pyramidal neurons from Upf3b-null mice display deficient dendritic spine maturation in vivo. In addition, neural stem cells from Upf3b-null mice have impaired ability to undergo differentiation and require prolonged culture to give rise to functional neurons with electrical activity. RNA sequencing (RNAseq) analysis of the frontal cortex identified UPF3B-regulated RNAs, including direct NMD target transcripts encoding proteins with known functions in neural differentiation, maturation and disease. We suggest Upf3b-null mice serve as a novel model system to decipher cellular and molecular defects underlying ID and neurodevelopmental disorders
- …