7,922 research outputs found
Probing the geometry and motion of AGN coronae through accretion disc emissivity profiles
To gain a better understanding of the inner disc region that comprises active
galactic nuclei it is necessary to understand the pattern in which the disc is
illuminated (the emissivity profile) by X-rays emitted from the continuum
source above the black hole (corona). The differences in the emissivity
profiles produced by various corona geometries are explored via general
relativistic ray tracing simulations. Through the analysis of various
parameters of the geometries simulated it is found that emissivity profiles
produced by point source and extended geometries such as cylindrical slabs and
spheroidal coronae placed on the accretion disc are distinguishable. Profiles
produced by point source and conical geometries are not significantly
different, requiring an analysis of reflection fraction to differentiate the
two geometries. Beamed point and beamed conical sources are also simulated in
an effort to model jet-like coronae, though the differences here are most
evident in the reflection fraction. For a point source we determine an
approximation for the measured reflection fraction with the source height and
velocity. Simulating spectra from the emissivity profiles produced by the
various geometries produce distinguishable differences. Overall spectral
differences between the geometries do not exceed 15 per cent in the most
extreme cases. It is found that emissivity profiles can be useful in
distinguishing point source and extended geometries given high quality spectral
data of extreme, bright sources over long exposure times. In combination with
reflection fraction, timing, and spectral analysis we may use emissivity
profiles to discern the geometry of the X-ray source.Comment: 15 pages, 12 figures. Accepted for publication in MNRA
Caught in the act: Measuring the changes in the corona that cause the extreme variability of 1H 0707-495
The X-ray spectra of the narrow line Seyfert 1 galaxy, 1H 0707-495, obtained
with XMM-Newton, from time periods of varying X-ray luminosity are analysed in
the context of understanding the changes to the X-ray emitting corona that lead
to the extreme variability seen in the X-ray emission from active galactic
nuclei (AGN). The emissivity profile of the accretion disc, illuminated by the
X-ray emitting corona, along with previous measurements of reverberation time
lags are used to infer the spatial extent of the X-ray source. By fitting a
twice-broken power law emissivity profile to the relativistically-broadened
iron K fluorescence line, it is inferred that the X-ray emitting corona expands
radially, over the plane of the accretion disc, by 25 to 30 per cent as the
luminosity increases, contracting again as the luminosity decreases, while
increases in the measured reverberation lag as the luminosity increases would
require also variation in the vertical extent of the source above the disc. The
spectrum of the X-ray continuum is found to soften as the total X-ray
luminosity increases and we explore the variation in reflected flux as a
function of directly-observed continuum flux. These three observations combined
with simple, first-principles models constructed from ray tracing simulations
of extended coron self-consistently portray an expanding corona whose average
energy density decreases, but with a greater number of scattering particles as
the luminosity of this extreme object increases.Comment: 12 pages, 4 figures. Accepted for publication in MNRA
Modelling the Extreme X-ray Spectrum of IRAS 13224-3809
The extreme NLS1 galaxy IRAS 13224-3809 shows significant variability,
frequency depended time lags, and strong Fe K line and Fe L features in the
long 2011 XMM-Newton observation. In this work we study the spectral properties
of IRAS 13224-3809 in detail, and carry out a series of analyses to probe the
nature of the source, focusing in particular on the spectral variability
exhibited. The RGS spectrum shows no obvious signatures of absorption by
partially ionised material (warm absorbers). We fit the 0.3-10.0 keV spectra
with a model that includes relativistic reflection from the inner accretion
disc, a standard powerlaw AGN continuum, and a low-temperature (~0.1 keV)
blackbody, which may originate in the accretion disc, either as direct or
reprocessed thermal emission. We find that the reflection model explains the
time-averaged spectrum well, and we also undertake flux-resolved and
time-resolved spectral analyses, which provide evidence of gravitational
light-bending effects. Additionally, the temperature and flux of the blackbody
component are found to follow the relation expected for simple
thermal blackbody emission from a constant emitting area, indicating a physical
origin for this component.Comment: 12 pages, 7 figures, accepted for publication in MNRA
Discovery of high-frequency iron K lags in Ark 564 and Mrk 335
We use archival XMM-Newton observations of Ark 564 and Mrk 335 to calculate
the frequency dependent time-lags for these two well-studied sources. We
discover high-frequency Fe K lags in both sources, indicating that the red wing
of the line precedes the rest frame energy by roughly 100 s and 150 s for Ark
564 and Mrk 335, respectively. Including these two new sources, Fe K
reverberation lags have been observed in seven Seyfert galaxies. We examine the
low-frequency lag-energy spectrum, which is smooth, and shows no feature of
reverberation, as would be expected if the low-frequency lags were produced by
distant reflection off circumnuclear material. The clear differences in the low
and high frequency lag-energy spectra indicate that the lags are produced by
two distinct physical processes. Finally, we find that the amplitude of the Fe
K lag scales with black hole mass for these seven sources, consistent with a
relativistic reflection model where the lag is the light travel delay
associated with reflection of continuum photons off the inner disc.Comment: 10 pages, 12 figures, accepted for publication in MNRA
X-ray reverberation around accreting black holes
Luminous accreting stellar mass and supermassive black holes produce
power-law continuum X-ray emission from a compact central corona. Reverberation
time lags occur due to light travel time-delays between changes in the direct
coronal emission and corresponding variations in its reflection from the
accretion flow. Reverberation is detectable using light curves made in
different X-ray energy bands, since the direct and reflected components have
different spectral shapes. Larger, lower frequency, lags are also seen and are
identified with propagation of fluctuations through the accretion flow and
associated corona. We review the evidence for X-ray reverberation in active
galactic nuclei and black hole X-ray binaries, showing how it can be best
measured and how it may be modelled. The timescales and energy-dependence of
the high frequency reverberation lags show that much of the signal is
originating from very close to the black hole in some objects, within a few
gravitational radii of the event horizon. We consider how these signals can be
studied in the future to carry out X-ray reverberation mapping of the regions
closest to black holes.Comment: 72 pages, 32 figures. Accepted for publication in The Astronomy and
Astrophysics Review. Corrected for mostly minor typos, but in particular
errors are corrected in the denominators of the covariance and rms spectrum
error equations (Eqn. 14 and 15
The Closest Look at 1H0707-495: X-ray Reverberation Lags with 1.3 Ms of Data
Reverberation lags in AGN were first discovered in the NLS1 galaxy,
1H0707-495. We present a follow-up analysis using 1.3 Ms of data, which allows
for the closest ever look at the reverberation signature of this remarkable
source. We confirm previous findings of a hard lag of ~100 seconds at
frequencies v ~ [0.5 - 4] e-4 Hz, and a soft lag of ~30 seconds at higher
frequencies, v ~ [0.6 - 3] e-3 Hz. These two frequency domains clearly show
different energy dependences in their lag spectra. We also find evidence for a
signature from the broad Fe K line in the high frequency lag spectrum. We use
Monte Carlo simulations to show how the lag and coherence measurements respond
to the addition of Poisson noise and to dilution by other components. With our
better understanding of these effects on the lag, we show that the lag-energy
spectra can be modelled with a scenario in which low frequency hard lags are
produced by a compact corona responding to accretion rate fluctuations
propagating through an optically thick accretion disc, and the high frequency
soft lags are produced by short light-travel delay associated with reflection
of coronal power-law photons off the disc.Comment: 11 pages, 10 figures. Accepted for publication in MNRA
On the clarity of the musical stave
The staves of 63 scores of popular keyboard music from 50 publishers were measured. The staves had similar height but lines that varied in thickness from 0.1 mm to 0.45 mm. Evidence from visual psychophysics suggests that when the stave has thick lines, perceptual distortions are likely to affect the clarity of the score adversely. Students were asked to sight-read scores comprising random notes (“chromatic”) or random notes in the key of G. The scores had staves with lines that were 0.1 mm or 0.4 mm thick (current typographic practice). Twice as many errors were made when the staves had thick lines, although the scores were then read more slowly. Scores in the key of G were read more accurately than the “chromatic” scores, but those with thick lines were read with as many errors as “chromatic” scores with thin lines. There was a tendency for individuals with susceptibility to pattern glare to read the scores with thick lines relatively slowly. The findings suggest that perceptual distortions can impair sight-reading of music manuscript because of the pattern from the lines of the stave; using thinner lines can increase both sight reading accuracy and speed. </jats:p
- …