450 research outputs found

    TGA/FTIR: An Extremely Useful Technique for Studying Polymer Degradation

    Get PDF
    Thermogravimetric analysis coupled to Fourier transform infrared spectroscopy, TGA/FTIR, has been used to probe the degradation of several polymeric systems. These include poly(methyl methacrylate) in the presence of various additives, graft copolymers of acrylonitrile-butadiene-styrene and styrene-butadiene with sodium methacrylate and styrene with acrylonitrile, blends of styrene-butadiene block copolymers with poly(vinylphosphonic acid) and poly(vinylsulfonic acid), and cross-linked polystyrenes. Additives may interact with poly(methyl methacrylate) by coordination to the carbonyl oxygen to a Lewis acid and the subsequent transfer of an electron from the polymer chain to the metal atom or by the formation of a radical which can trap the degrading radicals before they can undergo further degradation. When an inorganic char-former is graft copolymerized onto a polymer, there is a good correlation between TGA behavior in an inert atmosphere and thermal stability in air, but this is not true when the char is largely carbonific

    An Introduction to the Use of Fillers and Nanocomposites in Fire Retardancy

    Get PDF

    Ferrocene and Ferrocenium Modified Clays and Their Styrene and EVA Composites

    Get PDF
    In this work, ferrocene- and ferrocenium-containing salts were employed to modify montmorillonite. X-ray measurements show an increase in the interlayer spacing upon clay modification, which means that the larger and more organophilic cations were inserted into the gallery space of montmorillonite. Attempts to prepare nanocomposites of polystyrene and ethylene vinyl acetate copolymers lead to immiscible systems; the morphology of these systems was elucidated with TEM, XRD and cone calorimetry. The thermal stability of the composites is greater than that of the virgin polymer

    Thermal Degradation of Blends of Polystyrene and poly(sodium 4-styrenesulfonate) and the copolymer, poly(styrene-co-sodium 4-styrenesulfonate)

    Get PDF
    The thermal degradation of blends and copolymers of styrene with styrenesulfonic acid has been studied using thermogravimetric analysis, TGA/FTIR, and cone calorimetry. The blends have enhanced thermal stability relative to virgin polystyrene but there is no enhancement in thermal stability for the copolymers. Apparently, it is necessary to have adjacent sulfonic acid groups in order to permit the formation of a graphite-like char which can provide thermal protection to the polymer. It is necessary to have a good match in degradation temperatures of the two components if one is to have significantly enhanced thermal stability

    Graft Copolymerization of Methacrylic Acid, Acrylic Acid and Methyl Acrylate onto Styrene–Butadiene Block Copolymer

    Get PDF
    Methyl acrylate, methacrylic acid, and acrylic acid have been graft copolymerized onto styrene–butadiene block copolymer. All three monomers react through the macroradical interacting with the double bond of butadiene. The site of reaction has been established by infrared spectroscopy. For methyl acrylate every unit of the styrene–butadiene block copolymer is grafted but only a small fraction is grafted when the acids are used. The difference apparently lies in the fact that the reaction with the ester is homogeneous while with the acids the reactions are heterogeneous

    Photooxidation of Polymeric-inorganic nanocomposites: Chemical, Thermal Stability and Fire Retardancy Investigations

    Get PDF
    Nanocomposites of polypropylene-graft-maleic anhydride/clay and polypropylene/clay were prepared by melt blending using two different approaches. X-Ray diffraction results showed an intercalated structure. Samples of nanocomposites were exposed to UV light under atmospheric oxygen and their photo-oxidative stability was studied using FTIR and UV spectroscopy. The consequences of this photo-oxidation on the thermal stability and fire retardant performance of the nanocomposites were also addressed from thermogravimetry analysis and Cone calorimetry

    Study on Intumescent Flame Retarded Polystyrene Composites with Improved Flame Retardancy

    Get PDF
    The flame retardancy and thermal stability of ammonium polyphosphate/tripentaerythritol (APP/TPE) intumescent flame retarded polystyrene composites (PS/IFR) combined with organically-modified layered inorganic materials (montmorillonite clay and zirconium phosphate), nanofiber (multiwall carbon nanotubs), nanoparticle (Fe2O3) and nickel catalyst were evaluated by cone calorimetry, microscale combustion calorimetry (MCC) and thermogravimetric analysis (TGA). Cone calorimetry revealed that a small substitution of IFR by most of these fillers (≤2%) imparted substantial improvement in flammability performance. The montmorillonite clay exhibited the highest efficiency in reducing the peak heat release rate of PS/IFR composite, while zirconium phosphate modified with C21H26NClO3S exhibited a negative effect. The yield and thermal stability of the char obtained from TGA correlated well with the reduction in the peak heat release rate in the cone calorimeter. Since intumesence is a condensed-phase flame process, the MCC results showed features different from those obtained from the cone calorimeter

    In situ reactive blending to prepare polystyrene-clay and polypropylene-clay nanocomposites

    Get PDF
    Nanocomposites of polystyrene and polypropylene with organically-modified clay may be prepared by melt blending in a Brabender mixer the clay and the polymer. The presence of maleic anhydride increases the likelihood of nanocomposite formation for polystyrene but is less important for polypropylene. The materials that result are immiscible materials, in that the clay is not uniformly distributed throughout the polymer matrix, but there is polymer inserted between the clay layers. The results from cone calorimetry suggest that nanocomposite formation has occurred, since there is a significant reduction in the peak heat release rate

    Fire Retardancy of Melamine and Zinc Aluminum Layered Double Hydroxide in Poly(methyl Methacrylate)

    Get PDF
    The thermal and fire properties of PMMA modified with various loadings of melamine or zinc aluminum undecenoate LDH were evaluated using TGA, DTA and cone calorimetry. The additives were characterized by X-ray diffraction, TGA, FT-IR and elemental analysis. While the two additives are very effective with this polymer, a higher loading of melamine (30%) is required to reach a good reduction in PHRR (47%) relative to the pure polymer, while with the LDH, 10% loading is enough to obtain a similar reduction. The combinations of these additives in PMMA reveal that the time to PHRR and the amount of smoke produced are the key differences, with melamine increasing the first parameter and leading to less smoke production relative to LDH-rich PMMA systems at similar total additive loadings. Analysis of the residue shows that melamine is completely lost during combustion while the LDH forms ZnO and ZnAl2O4

    Investigation of the Thermal Degradation of Polyurea: The Effect of Ammonium Polyphosphate and Expandable Graphite

    Get PDF
    Polyurea was compounded with ammonium polyphosphate and expandable graphite and the morphology was studied by atomic force microscopy. The thermal degradation of polyurea and polyurea compounded with the additives has been investigated using thermogravimetry coupled with Fourier Transform infrared spectroscopy and mass spectrometry. The study of the thermal degradation and the parameters affecting the thermal stability of PU is essential in order to effectively design flame retarded polyurea. In general, thermal decomposition of polyurea occurs in two steps assigned to the degradation of the hard segment and soft segment, respectively. Adding these additives accelerates the decomposition reaction of polyurea. However, it is clear that more char is formed. This char is thermally more stable than the carbonaceous structure obtained from neat PU. The intumescent shield traps the polymer fragments and limits the evolution of small flammable molecules that are able to feed the flame
    • …
    corecore