40 research outputs found

    Failure of retrograde cerebral perfusion to attenuate metabolic changes associated with hypothermic circulatory arrest

    Get PDF
    AbstractObjectives: Although retrograde cerebral perfusion has become a popular adjunctive technique and may improve cerebral ischemic tolerance during hypothermic circulatory arrest, direct cerebral metabolic benefit has yet to be demonstrated in human subjects. We investigated the post-arrest metabolic phenomena with and without retrograde cerebral perfusion in patients. Methods: In a prospective randomized trial, 42 patients undergoing aortic surgery requiring hypothermic circulatory arrest were allocated to receive hypothermic circulatory arrest alone (n = 21) or hypothermic circulatory arrest with additional retrograde cerebral perfusion (n = 21). Circulatory arrest was commenced at 15°C, and retrograde perfusion was instituted through the superior vena cava at a maximum jugular bulb pressure of 25 mm Hg. Transcranial, paired, repeated samples of the arterial and jugular bulb blood were analyzed for oxygen and glucose. Velocity in the right middle cerebral artery was also measured simultaneously. Results: There were 3 (7.1%) deaths and 3 (7.1%) episodes of neurologic deficit. Mean bypass and circulatory arrest duration (in minutes) were similar between groups (P = .4 and .14). The mean retrograde perfusion duration was 23 minutes. Post-arrest nasopharyngeal temperature was similar (15.3°C vs 15.3°C). Retrograde perfusion did not affect post-arrest oxygen extraction, glucose extraction, or jugular bulb Po2. There was no immediate lactate release immediately after hypothermic circulatory arrest. Conclusions: Retrograde cerebral perfusion did not influence immediate post-arrest nasopharyngeal temperature or cerebral metabolic recovery. The low jugular bulb Po2 suggests equivalent ischemia. These findings cast doubt on the effectiveness of retrograde cerebral perfusion as a metabolic adjunct to hypothermic circulatory arrest.J Thorac Cardiovasc Surg. 2002;123:943-50

    Regional Nerve Block of the Temporomandibular Joint Capsule: A Technique for Clinical Research and Differential Diagnosis

    Full text link
    In previous studies in which regional anesthesia of the temporomandibular joint capsule was used to examine the role of the joint in mandibular movement and distinguish it from muscle control, the anesthetic techniques used have not been satisfactorily described. The accuracy of the injeetion technique described in this paper was determined by dissection and radiographic examination of fixed and fresh specimens. Using this technique, trial patient studies were made using an anesthetic solution to which a radiopaque medium was added. Radiographic examination of the patients affirmed the location of the injected material, while clinical assessment determined its functional effectiveness. Using the described technique, anesthetic solution was accurately and reproducibly introduced posteriorly and laterally to the temporomandibular joint to achieve anesthesia of the joint.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67376/2/10.1177_00220345800590110101.pd

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research
    corecore