4,445 research outputs found
Thermodynamic identities and particle number fluctuations in weakly interacting Bose--Einstein condensates
We derive exact thermodynamic identities relating the average number of
condensed atoms and the root-mean-square fluctuations determined in different
statistical ensembles for the weakly interacting Bose gas confined in a box.
This is achieved by introducing the concept of {\it auxiliary partition
functions} for model Hamiltonians that do conserve the total number of
particles. Exploiting such thermodynamic identities, we provide the first,
completely analytical prediction of the microcanonical particle number
fluctuations in the weakly interacting Bose gas. Such fluctuations, as a
function of the volume V of the box are found to behave normally, at variance
with the anomalous scaling behavior V^{4/3} of the fluctuations in the ideal
Bose gas.Comment: 5 pages, 1 figur
Laboratory Studies Of The Acoustic Properties Of Samples From The Salton Sea Scientific Drilling Project And Their Relation To Microstructure And Field Measurements
Compressional and shear wave velocities were measured at confining pressures up to
200 MPa for twelve core samples from the depth interval of 600 to 2600 m in the California State 2-14 borehole. Samples were selected to represent the various lithologies, including clean, heavily cemented sandstones, altered, impermeable claystones, and several intermediate siltstones. Velocities measured at ultrasonic frequencies in the laboratory correspond closely with velocities determined from acoustic waveform logs and vertical seismic profiles. The samples exhibit P-wave velocities around 3.5 km/sec at depths above 1250 m, but increase to nearly 5.0 km/sec at 1300 m in depth. Further increases with depth result in compressional wave velocity increasing to nearly 6.0 km/sec. These increases in velocities are related to systematic variations in lithology, microstructure and hydrothermal alteration of originally clay-rich sediments. Scanning electron microscope observations of core samples confirm that local core velocities are determined by the combined effects of pore size distributions, and the proportion of clays and alteration minerals such as epidote present in the form of pore fillings and veins.United States. Dept. of the Interior. Geological Survey (Grant 14-08-001A-0328)Elf-Aquitaine (Postdoctoral Fellowship
Dependence of the BEC transition temperature on interaction strength: a perturbative analysis
We compute the critical temperature T_c of a weakly interacting uniform Bose
gas in the canonical ensemble, extending the criterion of condensation provided
by the counting statistics for the uniform ideal gas. Using ordinary
perturbation theory, we find in first order , where T_c^0 is the transition temperature of the corresponding
ideal Bose gas, a is the scattering length, and is the particle number
density.Comment: 14 pages (RevTeX
Bose-Einstein Condensation Temperature of Homogenous Weakly Interacting Bose Gas in Variational Perturbation Theory Through Six Loops
We compute the shift of the transition temperature for a homogenous weakly
interacting Bose gas in leading order in the scattering length a for given
particle density n. Using variational perturbation theory through six loops in
a classical three-dimensional scalar field theory, we obtain Delta T_c/T_c =
1.25+/-0.13 a n^(1/3), in agreement with recent Monte-Carlo results.Comment: 4 pages; omega' corrected: final result changes slightly to
1.25+/-0.13; references added; several minor change
Quantum Games and Quantum Strategies
We investigate the quantization of non-zero sum games. For the particular
case of the Prisoners' Dilemma we show that this game ceases to pose a dilemma
if quantum strategies are allowed for. We also construct a particular quantum
strategy which always gives reward if played against any classical strategy.Comment: 4 pages, 4 figures, typographic sign error in the definition of the
operator J correcte
Transition temperature of a dilute homogeneous imperfect Bose gas
The leading-order effect of interactions on a homogeneous Bose gas is
theoretically predicted to shift the critical temperature by an amount
\Delta\Tc = # a_{scatt} n^{1/3} T_0 from the ideal gas result T_0, where
a_{scatt} is the scattering length and n is the density. There have been
several different theoretical estimates for the numerical coefficient #. We
claim to settle the issue by measuring the numerical coefficient in a lattice
simulation of O(2) phi^4 field theory in three dimensions---an effective theory
which, as observed previously in the literature, can be systematically matched
to the dilute Bose gas problem to reproduce non-universal quantities such as
the critical temperature. We find # = 1.32 +- 0.02.Comment: 4 pages, submitted to Phys. Rev. Lett; minor changes due to
improvement of analysis in the longer companion pape
Ground-state properties of trapped Bose-Fermi mixtures: role of exchange-correlation
We introduce Density Functional Theory for inhomogeneous Bose-Fermi mixtures,
derive the associated Kohn-Sham equations, and determine the
exchange-correlation energy in local density approximation. We solve
numerically the Kohn-Sham system and determine the boson and fermion density
distributions and the ground-state energy of a trapped, dilute mixture beyond
mean-field approximation. The importance of the corrections due to
exchange--correlation is discussed by comparison with current experiments; in
particular, we investigate the effect of of the repulsive potential energy
contribution due to exchange--correlation on the stability of the mixture
against collapse.Comment: 6 pages, 4 figures (final version as published in Physical Review
A semi-classical field method for the equilibrium Bose gas and application to thermal vortices in two dimensions
We develop a semi-classical field method for the study of the weakly
interacting Bose gas at finite temperature, which, contrarily to the usual
classical field model, does not suffer from an ultraviolet cut-off dependence.
We apply the method to the study of thermal vortices in spatially homogeneous,
two-dimensional systems. We present numerical results for the vortex density
and the vortex pair distribution function. Insight in the physics of the system
is obtained by comparing the numerical results with the predictions of simple
analytical models. In particular, we calculate the activation energy required
to form a vortex pair at low temperature.Comment: 19 page
Maxwell Duality, Lorentz Invariance, and Topological Phase
We discuss the Maxwell electromagnetic duality relations between the
Aharonov-Bohm, Aharonov-Casher, and He-McKellar-Wilkens topological phases,
which allows a unified description of all three phenomena. We also elucidate
Lorentz transformations that allow these effects to be understood in an
intuitive fashion in the rest frame of the moving quantum particle. Finally, we
propose two experimental schemes for measuring the He-McKellar-Wilkens phase.Comment: 10 pages, 2 figure
- …