24 research outputs found

    The Sudbury Neutrino Observatory

    Full text link
    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and epsf style files. For additional information about SNO see http://www.sno.phy.queensu.ca . This version has some new reference

    Firm spin and parity assignments for high-lying, low-spin levels in stable Si isotopes

    Get PDF
    A natural silicon target was investigated in a natSi(γ, γ′) photon-scattering experiment with fully linearly-polarised, quasi-monochromatic γ rays in the entrance channel. The mean photon energies used were ⟨ Eγ⟩ = 9.33, 9.77, 10.17, 10.55, 10.93, and 11.37 MeV, and the relative energy spread (full width at half maximum) of the incident beam was ΔEγ/ ⟨ Eγ⟩ ≈ 3.5–4 %. The observed angular distributions for the ground-state decay allow firm spin and parity assignments for several levels of the stable even-even silicon isotopes

    Scissors Mode of

    No full text
    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ) experiments on Gd isotopes, and (γ,γ’) reactions

    Scissors Mode of 162Dy Studied from Resonance Neutron Capture

    No full text
    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ) experiments on Gd isotopes, and (γ,γ’) reactions

    Recent actinide nuclear data efforts with the DANCE 4π BaF2 array

    No full text
    Much of the recent work in the DANCE collaboration has focused on nuclides of interest to stockpile stewardship, attribution science and the advanced fuel cycle initiative. As an example, we have recently begun a program to produce high precision measurements of the key production and destruction reactions of important nuclear fuel elements and radiochemical diagnostic isotopes. The neutron capture targets that have been fielded under this program include several isotopes of uranium, plutonium and americium. However, neutron capture measurements on many of the actinides are complicated by the presence of γ-rays arising from low energy neutron-induced fission. To overcome this difficulty we have designed and implemented a dual parallel-plate avalanche counter fission-tagging detector. This design provides a high efficiency for detecting fission fragments and is self-contained to allow loading of pre-assembled target/detector assemblies into the neutron beam line at DANCE. An outline of the recent experimental program will be presented as well as preliminary results from neutron capture measurements on 234,235,236U. Planned measurements on 238,239Pu will also be discussed
    corecore