48 research outputs found
Hydrogels based on collagen and fibrin - Frontiers and applications
Hydrogels are a versatile tool for a multitude of applications in biomedical research and clinical practice. Especially collagen and fibrin hydrogels are distinguished by their excellent biocompatibility, natural capacity for cell adhesion and low immunogenicity. In many ways, collagen and fibrin represent an ideal biomaterial, as they can serve as a scaffold for tissue regeneration and promote the migration of cells, as well as the ingrowth of tissues. On the other hand, pure collagen and fibrin materials are marked by poor mechanical properties and rapid degradation, which limits their use in practice. This paper will review methods of modification of natural collagen and fibrin materials to next-generation materials with enhanced stability. A special focus is placed on biomedical products from fibrin and collagen already on the market. In addition, recent research on the in vivo applications of collagen and fibrin-based materials will be showcased. © 2016 by De Gruyter
Triple Modification of Alginate Hydrogels by Fibrin Blending, Iron Nanoparticle Embedding, and Serum Protein-Coating Synergistically Promotes Strong Endothelialization
Stent therapy can reduce both morbidity and mortality of chronic coronary stenosis and acute myocardial infarction. However, delayed re-endothelialization, endothelial dysfunction, and chronic inflammation are still unsolved problems. Alginate hydrogels can be used as a coating for stent surfaces; however, complete and fast endothelialization cannot be achieved. In this study, alginate hydrogels are modified by fibrin blending, iron nanoparticle (Fe-NP) embedding, and serum protein coating (SPC) while surface properties and endothelialization capacity are monitored. Only a triple, synergetic modification of the alginate coating by simultaneous I) fibrin blending, II) Fe-NP addition complemented by III) SPC is found to significantly improve endothelial cell viability (live–dead-staining) and proliferation (WST-8 assay). These conditions yield formation of closed endothelial cell monolayers and an up to threefold increase (p < 0.01) in viability, while, interestingly, no effect is found when the modifications (I)–(III) are conducted individually. This synergetic effect is attributed to an accumulation of agglomerated Fe-NP and serum proteins along fibrin fibers, observed via laser scanning microscopy tracking nanoparticle scattering and tetramethylrhodamine (TRITC)-albumin fluorescence. These synergetic effects can pave the way toward a novel strategy for the modification of various hydrogel-based biomaterials and biomaterial coatings
Fabrication and biomechanical characterization of a spider silk reinforced fibrin-based vascular prosthesis
With fibrin-based vascular prostheses, vascular tissue engineering offers a promising approach for the fabrication of biologically active regenerative vascular grafts. As a potentially autologous biomaterial, fibrin exhibits excellent hemo- and biocompatibility. However, the major problem in the use of fibrin constructs in vascular tissue engineering, which has so far prevented their widespread clinical application, is the insufficient biomechanical stability of unprocessed fibrin matrices. In this proof-of-concept study, we investigated to what extent the addition of a spider silk network into the wall structure of fibrin-based vascular prostheses leads to an increase in biomechanical stability and an improvement in the biomimetic elastic behavior of the grafts. For the fabrication of hybrid prostheses composed of fibrin and spider silk, a statically cast tubular fibrin matrix was surrounded with an envelope layer of Trichonephila edulis silk using a custom built coiling machine. The fibrin matrix was then compacted and pressed into the spider silk network by transluminal balloon compression. This manufacturing process resulted in a hybrid prosthesis with a luminal diameter of 4 mm. Biomechanical characterization revealed a significant increase in biomechanical stability of spider silk reinforced grafts compared to exclusively compacted fibrin segments with a mean burst pressure of 362 ± 74 mmHg vs. 213 ± 14 mmHg (p < 0.05). Dynamic elastic behavior of the spider silk reinforced grafts was similar to native arteries. In addition, the coiling with spider silk allowed a significant increase in suture retention strength and resistance to external compression without compromising the endothelialization capacity of the grafts. Thus, spider silk reinforcement using the abluminal coiling technique represents an efficient and reproducible technique to optimize the biomechanical behavior of small-diameter fibrin-based vascular grafts
Chemically induced hypoxia by dimethyloxalylglycine (dmog)-loaded nanoporous silica nanoparticles supports endothelial tube formation by sustained vegf release from adipose tissue-derived stem cells
Inadequate vascularization leading to insufficient oxygen and nutrient supply in deeper layers of bioartificial tissues remains a limitation in current tissue engineering approaches to which prevascularization offers a promising solution. Hypoxia triggering pre-vascularization by enhanced vascular endothelial growth factor (VEGF) expression can be induced chemically by dimethyloxalylglycine (DMOG). Nanoporous silica nanoparticles (NPSNPs, or mesoporous silica nanoparticles, MSNs) enable sustained delivery of molecules and potentially release DMOG allowing a durable capillarization of a construct. Here we evaluated the effects of soluble DMOG and DMOG-loaded NPSNPs on VEGF secretion of adipose tissue-derived stem cells (ASC) and on tube formation by human umbilical vein endothelial cells (HUVEC)-ASC co-cultures. Repeated doses of 100 mM and 500 mM soluble DMOG on ASC resulted in 3- to 7-fold increased VEGF levels on day 9 (P<0.0001). Same doses of DMOG-NPSNPs enhanced VEGF secretion 7.7-fold (P<0.0001) which could be maintained until day 12 with 500 mM DMOG-NPSNPs. In fibrin-based tube formation assays, 100 mM DMOG-NPSNPs had inhibitory effects whereas 50 mM significantly increased tube length, area and number of junctions transiently for 4 days. Thus, DMOG-NPSNPs supported endothelial tube formation by upregulated VEGF secretion from ASC and thus display a promising tool for prevascularization of tissue-engineered constructs. Further studies will evaluate their effect in hydrogels under perfusion
Establishment of a Modular Hemodynamic Simulator for Accurate In Vitro Simulation of Physiological and Pathological Pressure Waveforms in Native and Bioartificial Blood Vessels
Purpose!#!In vitro stimulation of native and bioartificial vessels in perfusable systems simulating natural mechanical environments of the human vasculature represents an emerging approach in cardiovascular research. Promising results have been achieved for applications in both regenerative medicine and etiopathogenetic investigations. However, accurate and reliable simulation of the wide variety of physiological and pathological pressure environments observed in different vessels still remains an unmet challenge.!##!Methods!#!We established a modular hemodynamic simulator (MHS) with interchangeable and modifiable components suitable for the perfusion of native porcine-(i.e. the aorta, brachial and radial arteries and the inferior vena cava) and bioartificial fibrin-based vessels with anatomical site specific pressure curves. Additionally, different pathological pressure waveforms associated with cardiovascular diseases including hyper- and hypotension, tachy- and bradycardia, aortic valve stenosis and insufficiency, heart failure, obstructive cardiomyopathy and arterial stiffening were simulated. Pressure curves, cyclic distension and shear stress were measured for each vessel and compared to ideal clinical pressure waveforms.!##!Results!#!The pressure waveforms obtained in the MHS showed high similarity to the ideal anatomical site specific pressure curves of different vessel types. Moreover, the system facilitated accurate emulation of physiological and different pathological pressure conditions in small diameter fibrin-based vessels.!##!Conclusion!#!The MHS serves as a variable in vitro platform for accurate emulation of physiological and pathological pressure environments in biological probes. Potential applications of the system include bioartificial vessel maturation in cardiovascular tissue engineering approaches as well as etiopathogenetic investigations of various cardiovascular pathologies
Dehydration improves biomechanical strength of bioartificial vascular graft material and allows its long-term storage
We have recently reported about a novel technique for the generation of bioartificial vascular grafts based on the use of a compacted fibrin matrix. In this study, we evaluated the effects of a dehydration process on the biomechanical properties of compacted fibrin tubes and whether it allows for their long-term storage
Laser fabrication of 3D gelatin scaffolds for the generation of bioartificial tissues
In the present work, the two-photon polymerization (2PP) technique was applied to develop precisely defined biodegradable 3D tissue engineering scaffolds. The scaffolds were fabricated via photopolymerization of gelatin modified with methacrylamide moieties. The results indicate that the gelatin derivative (GelMod) preserves its enzymatic degradation capability after photopolymerization. In addition, the developed scaffolds using 2PP support primary adipose-derived stem cell (ASC) adhesion, proliferation and differentiation into the anticipated lineage