2 research outputs found

    Dihydropyrimidine dehydrogenase testing prior to treatment with 5-Fluorouracil, Capecitabine, and Tegafur

    No full text
    Background:\bf Background: 5-Fluorouracil (FU) is one of the most commonly used cytostatic drugs in the systemic treatment of cancer. Treatment with FU may cause severe or life-threatening side effects and the treatment-related mortality rate is 0.2–1.0%. Summary:\bf Summary: Among other risk factors associated with increased toxicity, a genetic deficiency in dihydropyrimidine dehydrogenase (DPD), an enzyme responsible for the metabolism of FU, is well known. This is due to variants in the DPD gene (DPYD). Up to 9% of European patients carry a DPD gene variant that decreases enzyme activity, and DPD is completely lacking in approximately 0.5% of patients. Here we describe the clinical and genetic background and summarize recommendations for the genetic testing and tailoring of treatment with 5-FU derivatives. The statement was developed as a consensus statement organized by the German Society for Hematology and Medical Oncology in cooperation with 13 medical associations from Austria, Germany, and Switzerland. KeyMessages:\bf Key Messages: (i) Patients should be tested for the 4 most common genetic DPYD variants before treatment with drugs containing FU. (ii) Testing forms the basis for a differentiated, risk-adapted algorithm with recommendations for treatment with FU-containing drugs. (iii) Testing may optionally be supplemented by therapeutic drug monitoring

    Generation of potentially inhibitory autoantibodies to ADAMTS13 in coronavirus disease 2019

    No full text
    It has recently been shown that von Willebrand factor (VWF) multimers contribute to immunothrombosis in Coronavirus disease 2019 (COVID-19). Since COVID-19 is associated with an increased risk of autoreactivity, the present study investigates, whether the generation of autoantibodies to ADAMTS13 contributes to this finding. In this observational prospective controlled multicenter study blood samples and clinical data of patients hospitalized for COVID-19 were collected from April to November 2020. The study included 156 individuals with 90 patients having confirmed COVID-19 of mild to critical severity. 30 healthy individuals and 36 critically ill ICU patients without COVID-19 served as controls. ADAMTS13 antibodies occurred in 31 (34.4%) COVID-19 patients. Antibodies occurred more often in critically ill COVID-19 patients (55.9%) than non-COVID-19 ICU patients and healthy controls (5.6% and 6.7%; p < 0.001), respectively. Generation of ADAMTS13 antibodies in COVID-19 was associated with lower ADAMTS13 activity (56.5%, interquartile range (IQR) 21.25 vs. 71.5%, IQR 24.25, p = 0.0041), increased disease severity (severe or critical in 90% vs. 62.3%, p = 0.019), and a trend to higher mortality (35.5% vs. 18.6%, p = 0.077). Median time to antibody development was 11 days after first positive SARS-CoV-2-PCR specimen. Gel analysis of VWF multimers resembled the constellation in patients with TTP. The present study demonstrates for the first time, that generation of ADAMTS13 antibodies is frequent in COVID-19, associated with lower ADAMTS13 activity and increased risk of an adverse disease course. These findings provide a rationale to include ADAMTS13 antibodies in the diagnostic workup of SARS-CoV-2 infections
    corecore