12 research outputs found

    Thermal Estimation of Matrix Heat Exchangers

    No full text

    Thermal calculation of heat exchangers with simplified consideration of axial wall heat conduction

    No full text
    The usual thermal design and rating methods [1, 2] for heat exchangers neglect axial wall heat conduction in the separating walls and external shells of recuperators and in the solid matrix of regenerators. This may lead to undesirable undersizing. In this paper a simplified model is developed for the fast estimation of axial wall conduction effects in counterflow, parallel flow and mixed-mixed cross-flow recuperators. The dispersion model [3] is used to describe the performance deterioration of the exchanger with an effective fluid dispersion Peclet number for the correction of the heat transfer coefficients or mean temperature difference. The method is tested against analytical and numerical calculations for counterflow and parallel flow with good results. It is also shown how the method can be adapted to thermal regenerators and the related thermal calculation methods [1, 2]. An alternative approach is suggested for the consideration of lateral heat conduction resistance in the solid matrix

    Evaluation method of single blow experiment for the determination of heat transfer coefficient and dispersive Peclet number*

    No full text
    An evaluation method is developed for single blow experiments with liquids on heat exchangers. The method is based on the unity Mach number dispersion model. The evaluation of one experiment yields merely one equation for the two unknowns, the number of transfer units and the dispersive Peclet number. Calculations on an example confirm that one single blow test alone cannot provide reliable values of the unknowns. A second test with a liquid of differing heat capacity is required, or a tracer experiment for the measurement of the Peclet number. A modified method is developed for gases. One experiment yields the effective number of transfer units and approximate values of the two unknowns. The numerical evaluation of calculated experiments demonstrates the applicability of the evaluation methods

    Evaluation of resisdence time measurements on heat exchangers for the determination of dispersive Peclet numbers

    No full text
    The recently developed special unity Mach number dispersion model prescribes the corrections to heat transfer coefficients which are simple functions of the dispersive Peclet numbers. They can be determined through the residence time measurements. An evaluation method is described in which the measured input and response concentration profiles are numerically Laplace transformed and evaluated in the frequency domain. A characteristic mean Peclet number is defined. The method is also applied to the parabolic dispersion model and the cascade model. A calculated example of a tube bundle with maldistribution and backflow demonstrates the suitability of the evaluation method

    EUROTHERM Seminar No. 18

    No full text
    The Eurotherm Committee was created in 1986 from member countries of the European Community. It has the purpose of organising and coordinating scientific events such as seminars and conferences in the thermal sciences. The series of Eurotherm Seminars established by the Committee has become a popular forum for high-level scientific and technical interchange of ideas in a wide range of specialist topics. While the presentation and publication of papers at the Seminars are encouraged, the primary aim is to stimulate discussion and liaison between specialist groups. The present Chairman of Eurotherm is Professor C.J. Hoogendoorn of the Technical University, Delft (Fax [NL] 15, 783251). Information on Mure Seminars is available from the Secretary, Keith Cornwell, Heriot-Watt University, Edinburgh (Fax [UK] 31, 451, 3129). This particular Seminar No. 18 on the Design and Operation of Heat Exchangers was the first one on this topic and was held at the Universitat der Bundeswehr Hamburg (University of the Federal Armed Forces Hamburg) from February 27 to March 1 in 1991. The seminar was an international event and was attended by more than 60 scientists not only from countries of the European Community such as Belgium, France, Germany, Great Britain, and the Netherlands but also from other countries such as Canada, China, India, Israel, Romania, Soviet Union, Sweden and the United States of America

    Design and operation of heat exchangers and their networks

    No full text
    corecore