520 research outputs found

    Stable RNA markers for identification of blood and saliva stains revealed from whole genome expression analysis of time-wise degraded samples

    Get PDF
    Human body fluids such as blood and saliva represent the most common source of biological material found at a crime scene. Reliable tissue identification in forensic science can reveal significant insights into crime scene reconstruction and can thus contribute toward solving crimes. Limitations of existing presumptive tests for body fluid identification in forensics, which are usually based on chemoluminescence or protein analysis, are expected to be overcome by RNA-based methods, provided that stable RNA markers with tissue-specific expression patterns are available. To generate sets of stable RNA markers for reliable identification of blood and saliva stains we (1) performed whole-genome gene expression analyses on a series of time-wise degraded blood and saliva stain samples using the Affymetrix U133 plus2 GeneChip, (2) consulted expression databases to obtain additional information on tissue specificity, and (3) confirmed expression patterns of the most promising candidate genes by quantitative real-time polymerase chain reaction including additional forensically relevant tissues such as semen and vaginal secretion. Overall, we identified nine stable mRNA markers for blood and five stable mRNA markers for saliva detection showing tissue-specific expression signals in stains aged up to 180 days of age, expectedly older. Although, all of the markers were able to differentiate blood/saliva from semen samples, none of them could differentiate vaginal secretion because of the complex nature of vaginal secretion and the biological similarity of buccal and vaginal mucosa. We propose the use of these 14 stable mRNA markers for identification of blood and saliva stains in future forensic practice

    Species-specific responses during Seoul orthohantavirus infection in human and rat lung microvascular endothelial cells

    Get PDF
    Seoul orthohantavirus (SEOV) is a rat-borne zoonotic virus that is transmitted via inhalation of aerosolized infectious excreta, and can cause hemorrhagic fever with renal syndrome (HFRS) in humans worldwide. In rats, SEOV predominantly exists as a persistent infection in the absence of overt clinical signs. Lack of disease in rats is attributed to downregulation of pro-inflammatory and upregulation of regulatory host responses. As lung microvascular endothelial cells (LMECs) represent a primary target of infection in both human and rats, infections in these cells provide a unique opportunity to study the central role of LMECs in the dichotomy between pathogenicity in both species. In this study, host responses to SEOV infection in primary human and rat LMECs were directly compared on a transcriptional level. As infection of rat LMECs was more efficient than human LMECs, the majority of anti-viral defense responses were observed earlier in rat LMECs. Most prominently, SEOV-induced processes in both species included responses to cytokine stimulus, negative regulation of innate immune responses, responses to type I and II interferons, regulation of pattern recognition receptor signaling and MHC-I signaling. However, over time, in the rat LMECs, responses shifted from an anti-viral state towards a more immunotolerant state displayed by a PD-L1, B2M-, JAK2-focused interaction network aiding in negative regulation of cytotoxic CD8-positive T cell activation. This suggests a novel mechanism by which species-specific orthohantavirus-induced endothelium and T cell crosstalk may play a crucial role in the development of acute disease in humans and persistence in rodents.</p

    Rabies virus uniquely reprograms the transcriptome of human monocyte-derived macrophages

    Get PDF
    Macrophages are amongst the first immune cells that encounter rabies virus (RABV) at virus entry sites. Activation of macrophages is essential for the onset of a potent immune response, but insights into the effects of RABV on macrophage activation are scarce. In this study we performed high-throughput sequencing on RNA extracted from macrophages that were exposed to RABV for 48 hours, and compared their transcriptional profiles to that of non-polarized macrophages (M0), and macrophages polarized towards the canonical M1, M2a and M2c phenotypes. Our analysis revealed that RABV-stimulated macrophages show high expression of several M1, M2a and M2c signature genes. Apart from their partial resemblance to these phenotypes, unbiased clustering analysis revealed that RABV induces a unique and distinct polarization program. Closer examination revealed that RABV induced multiple pathways related to the interferon- and antiviral response, which were not induced under other classical polarization strategies. Surprisingly, our data show that RABV induces an activated rather than a fully suppressed macrophage phenotype, triggering virus-induced activation and polarization. This includes multiple genes with known antiviral (e.g. APOBEC3A, IFIT/OAS/TRIM genes), which may play a role in anti-RABV immunity.</p

    Progesterone Inhibits Epithelial-to-Mesenchymal Transition in Endometrial Cancer

    Get PDF
    Background: Every year approximately 74,000 women die of endometrial cancer, mainly due to recurrent or metastatic disease. The presence of tumor infiltrating lymphocytes (TILs) as well as progesterone receptor (PR) positivity has been correlated with improved prognosis. This study describes two mechanisms by which progesterone inhibits metastatic spread of endometrial cancer: by stimulating T-cell infiltration and by inhibiting epithelial-to-mesenchymal cell transition (EMT). Methodology and Principal Findings: Paraffin sections from patients with (n = 9) or without (n = 9) progressive endometrial cancer (recurrent or metastatic disease) were assessed for the presence of CD4+ (helper), CD8+ (cytotoxic) and Foxp3+ (regulatory) T-lymphocytes and PR expression. Progressive disease was observed to be associated with significant loss of TILs and loss of PR expression. Frozen tumor samples, used for genome-wide expression analysis, showed significant regulation of pathways Conclusion: Intact progesterone signaling in non-progressive endometrial cancer seems to be an important factor stimulating immunosurveilance and inhibiting transition from an epithelial to a more mesenchymal, more invasive phenotype

    Single-Cell RNA Sequencing of Donor-Reactive T Cells Reveals Role of Apoptosis in Donor-Specific Hyporesponsiveness of Kidney Transplant Recipients

    Get PDF
    After kidney transplantation (KT), donor-specific hyporesponsiveness (DSH) of recipient T cells develops over time. Recently, apoptosis was identified as a possible underlying mechanism. In this study, both transcriptomic profiles and complete V(D)J variable regions of TR transcripts from individual alloreactive T cells of kidney transplant recipients were determined with single-cell RNA sequencing. Alloreactive T cells were identified by CD137 expression after stimulation of peripheral blood mononuclear cells obtained from KT recipients (N = 7) prior to and 3–5 years after transplantation with cells of their donor or a third party control. The alloreactive T cells were sorted, sequenced and the transcriptome and T cell receptor profiles were analyzed using unsupervised clustering. Alloreactive T cells retain a highly polyclonal T Cell Receptor Alpha/Beta repertoire over time. Post transplantation, donor-reactive CD4+ T cells had a specific downregulation of genes involved in T cell cytokine-mediated pathways and apoptosis. The CD8+ donor-reactive T cell profile did not change significantly over time. Single-cell expression profiling shows that activated and pro-apoptotic donor-reactive CD4+ T cell clones are preferentially lost after transplantation in stable kidney transplant recipients.</p

    Mutation Analysis of Pancreatic Juice and Plasma for the Detection of Pancreatic Cancer

    Get PDF
    Molecular profiling may enable earlier detection of pancreatic cancer (PC) in high-risk individuals undergoing surveillance and allow for personalization of treatment. We hypothesized that the detection rate of DNA mutations is higher in pancreatic juice (PJ) than in plasma due to its closer contact with the pancreatic ductal system, from which pancreatic cancer cells originate, and higher overall cell-free DNA (cfDNA) concentrations. In this study, we included patients with pathology-proven PC or intraductal papillary mucinous neoplasm (IPMN) with high-grade dysplasia (HGD) from two prospective clinical trials (KRASPanc and PACYFIC) for whom both PJ and plasma were available. We performed next-generation sequencing on PJ, plasma, and tissue samples and described the presence (and concordance) of mutations in these biomaterials. This study included 26 patients (25 PC and 1 IPMN with HGD), of which 7 were women (27%), with a median age of 71 years (IQR 12) and a median BMI of 23 kg/m2 (IQR 4). Ten patients with PC (40%) were (borderline) resectable at baseline. Tissue was available from six patients (resection n = 5, biopsy n = 1). A median volume of 2.9 mL plasma (IQR 1.0 mL) and 0.7 mL PJ (IQR 0.1 mL, p &lt; 0.001) was used for DNA isolation. PJ had a higher median cfDNA concentration (2.6 ng/μL (IQR 4.2)) than plasma (0.29 ng/μL (IQR 0.40)). A total of 41 unique somatic mutations were detected: 24 mutations in plasma (2 KRAS, 15 TP53, 2 SMAD4, 3 CDKN2A 1 CTNNB1, and 1 PIK3CA), 19 in PJ (3 KRAS, 15 TP53, and 1 SMAD4), and 8 in tissue (2 KRAS, 2 CDKN2A, and 4 TP53). The mutation detection rate (and the concordance with tissue) did not differ between plasma and PJ. In conclusion, while the concentration of cfDNA was indeed higher in PJ than in plasma, the mutation detection rate was not different. A few cancer-associated genetic variants were detected in both biomaterials. Further research is needed to increase the detection rate and assess the performance and suitability of plasma and PJ for PC (early) detection.</p

    Identification of candidate enhancers controlling the transcriptome during the formation of interphalangeal joints

    Get PDF
    The formation of the synovial joint begins with the visible emergence of a stripe of densely packed mesenchymal cells located between distal ends of the developing skeletal anlagen called the interzone. Recently the transcriptome of the early synovial joint was reported. Knowledge about enhancers would complement these data and lead to a better understanding of the control of gene transcription at the onset of joint development. Using ChIP-sequencing we have mapped the H3-signatures H3K27ac and H3K4me1 to locate regulatory elements specific for the interzone and adjacent phalange, respectively. This one-stage atlas of candidate enhancers (CEs) was used to map the association between these respective joint tissue specific CEs and biological processes. Subsequently, integrative analysis of transcriptomic data and CEs identified new putative regulatory elements of genes expressed in interzone (e.g., GDF5, BMP2 and DACT2) and phalange (e.g., MATN1, HAPLN1 and SNAI1). We also linked such CEs to genes known as crucial in synovial joint hypermobility and osteoarthritis, as well as phalange malformations. These analyses show that the CE atlas can serve as resource for identifying, and as starting point for experimentally validating, putative disease-causing genomic regulatory regions in patients with synovial joint dysfunctions and/or phalange disorders, and enhancer-controlled synovial joint and phalange formation

    Zeb2 DNA-Binding Sites in Neuroprogenitor Cells Reveal Autoregulation and Affirm Neurodevelopmental Defects, Including in Mowat-Wilson Syndrome

    Get PDF
    Functional perturbation and action mechanism studies have shown that the transcription factor Zeb2 controls cell fate decisions, differentiation, and/or maturation in multiple cell lineages in embryos and after birth. In cultured embryonic stem cells (ESCs), Zeb2’s mRNA/protein upregulation is necessary for the exit from primed pluripotency and for entering general and neural differentiation. We edited mouse ESCs to produce Flag-V5 epitope-tagged Zeb2 protein from one endogenous allele. Using chromatin immunoprecipitation coupled with sequencing (ChIP-seq), we mapped 2432 DNA-binding sites for this tagged Zeb2 in ESC-derived neuroprogenitor cells (NPCs). A new, major binding site maps promoter-proximal to Zeb2 itself. The homozygous deletion of this site demonstrates that autoregulation of Zeb2 is necessary to elicit the appropriate Zeb2-dependent effects in ESC-to-NPC differentiation. We have also cross-referenced all the mapped Zeb2 binding sites with previously obtained transcriptome data from Zeb2 perturbations in ESC-derived NPCs, GABAergic interneurons from the ventral forebrain of mouse embryos, and stem/progenitor cells from the post-natal ventricular-subventricular zone (V-SVZ) in mouse forebrain, respectively. Despite the different characteristics of each of these neurogenic systems, we found interesting target gene overlaps. In addition, our study also contributes to explaining developmental disorders, including Mowat-Wilson syndrome caused by ZEB2 deficiency, and also other monogenic syndromes.</p

    Analysis of mouse brain transcriptome after experimental Duvenhage virus infection shows activation of innate immune response and pyroptotic cell death pathway

    Get PDF
    Rabies is an important neglected disease, characterized by invariably fatal encephalitis. Several studies focus on understanding the pathogenic mechanisms of the prototype lyssavirus rabies virus (RABV) infection, and little is known about the pathogenesis of rabies caused by other lyssaviruses. We sought to characterize the host response to Duvenhage virus infection and compare it with responses observed during RABV infection by gene expression profiling of brains of mice with the respective infections. We found in both infections differentially expressed genes leading to increased expression of type I interferons (IFNs), chemokines, and proinflammatory cytokines. In addition several genes of the IFN signaling pathway are up-regulated, indicating a strong antiviral response and activation of the negative feedback mechanism to limit type I IFN responses. Furthermore we provide evidence that in the absence of significant neuronal apoptotic death, cell death of neurons is mediated via the pyroptotic pathway in both infections. Taken together, we have identified several genes and/or pathways for both infections that could be used to explore novel approaches for intervention strategies against rabies

    Germline variant in MSX1 identified in a Dutch family with clustering of Barrett’s esophagus and esophageal adenocarcinoma

    Get PDF
    The vast majority of esophageal adenocarcinoma cases are sporadic and caused by somatic mutations. However, over the last decades several families have been identified with clustering of Barrett’s esophagus and esophageal adenocarcinoma. This observation suggests that one or more hereditary factors may play a role in the initiation of Barrett’s esophagus and esophageal adenocarcinoma in these families. A Dutch family with clustering of Barrett’s esophagus and esophageal adenocarcinoma was identified. Normal DNA obtained from the proband diagnosed with Barrett’s esophagus was analyzed with SNP array and exome sequencing. A custom-made panel consisting of potential germline variants was verified in the normal DNA of the affected family members. In addition, the respective tumors were analyzed for somatic loss of the wild type allele or the presence of an inactivating somatic mutation in the wild type allele. Exome sequencing revealed 244 candidate variants in the normal DNA of the proband, of which 212 variants were verified successfully. After the normal DNA of the affected family members was analyzed for the presence of the 212 potential germline variants and subsequently the respective tumors, only one potential germline variant in MSX1 (chr4: 4861985 T > G, c.359T > G, p.V120G, NM_002448) showed loss of the wild type allele in the tumor DNAs of the affected family members. A germline variant in MSX1 was identified in a Dutch family with clustering of Barrett’s esophagus and esophageal adenocarcinoma. This finding indicates that the germline defect in MSX1 may be associated with Barrett’s esophagus and cancer in this particular family
    • …
    corecore