502 research outputs found
Super-Nernstian Shifts of Interfacial Proton-Coupled Electron Transfers : Origin and Effect of Noncovalent Interactions
The support of the University of Aberdeen is gratefully acknowledged. C.W. acknowledges a summer studentship from the Carnegie Trust for the Universities of Scotland. E.P.M.L. acknowledges SeCYT (Universidad Nacional de Cordoba), ́ CONICET- PIP 11220110100992, Program BID (PICT 2012-2324), and PME 2006-01581 for financial support.Peer reviewedPostprin
Temporal trends in mortality and provision of intensive care in younger women and men with acute myocardial infarction or stroke
BACKGROUND
Timely management of acute myocardial infarction (AMI) and acute stroke has undergone impressive progress during the last decade. However, it is currently unknown whether both sexes have profited equally from improved strategies. We sought to analyze sex-specific temporal trends in intensive care unit (ICU) admission and mortality in younger patients presenting with AMI or stroke in Switzerland.
METHODS
Retrospective analysis of temporal trends in 16,954 younger patients aged 18 to ≤ 52 years with AMI or acute stroke admitted to Swiss ICUs between 01/2008 and 12/2019.
RESULTS
Over a period of 12 years, ICU admissions for AMI decreased more in women than in men (- 6.4% in women versus - 4.5% in men, p < 0.001), while ICU mortality for AMI significantly increased in women (OR 1.2 [1.10-1.30], p = 0.032), but remained unchanged in men (OR 0.99 [0.94-1.03], p = 0.71). In stroke patients, ICU admission rates increased between 3.6 and 4.1% per year in both sexes, while ICU mortality tended to decrease only in women (OR 0.91 [0.85-0.95, p = 0.057], but remained essentially unaltered in men (OR 0.99 [0.94-1.03], p = 0.75). Interventions aimed at restoring tissue perfusion were more often performed in men with AMI, while no sex difference was noted in neurovascular interventions.
CONCLUSION
Sex and gender disparities in disease management and outcomes persist in the era of modern interventional neurology and cardiology with opposite trends observed in younger stroke and AMI patients admitted to intensive care. Although our study has several limitations, our data suggest that management and selection criteria for ICU admission, particularly in younger women with AMI, should be carefully reassessed
Adaptive Optics Nulling Interferometric Constraints on the Mid-Infrared Exozodiacal Dust Emission around Vega
We present the results of mid-infrared nulling interferometric observations
of the main-sequence star alpha Lyr (Vega) using the 6.5 m MMT with its
adaptive secondary mirror. From the observations at 10.6 microns, we find that
there is no resolved emission from the circumstellar environment (at
separations greater than 0.8 AU) above 2.1% (3 sigma limit) of the level of the
stellar photospheric emission. Thus, we are able to place an upper limit on the
density of dust in the inner system of 650 times that of our own solar system's
zodiacal cloud. This limit is roughly 2.8 times better than those determined
with photometric excess observations such as those by IRAS. Comparison with
far-infrared observations by IRAS shows that the density of warm dust in the
inner system (< 30 AU) is significantly lower than cold dust at larger
separations. We consider two scenarios for grain removal, the sublimation of
ice grains and the presence of a planetary mass "sweeper." We find that if
sublimation of ice grains is the only removal process, a large fraction (> 80%)
of the material in the outer system is ice.Comment: 11 pages, 1 figure, Accepted to The Astrophysical Journal Letter
First light of the VLT planet finder SPHERE. I. Detection and characterization of the sub-stellar companion GJ 758 B
GJ758 B is a brown dwarf companion to a nearby (15.76 pc) solar-type,
metal-rich (M/H = +0.2 dex) main-sequence star (G9V) that was discovered with
Subaru/HiCIAO in 2009. From previous studies, it has drawn attention as being
the coldest (~600K) companion ever directly imaged around a neighboring star.
We present new high-contrast data obtained during the commissioning of the
SPHERE instrument at the VLT. The data was obtained in Y-, J-, H-, and Ks-bands
with the dual-band imaging (DBI) mode of IRDIS, providing a broad coverage of
the full near-infrared (near-IR) range at higher contrast and better spectral
sampling than previously reported. In this new set of high-quality data, we
report the re-detection of the companion, as well as the first detection of a
new candidate closer-in to the star. We use the new 8 photometric points for an
extended comparison of GJ758 B with empirical objects and 4 families of
atmospheric models. From comparison to empirical object, we estimate a T8
spectral type, but none of the comparison object can accurately represent the
observed near-IR fluxes of GJ758 B. From comparison to atmospheric models, we
attribute a Teff = 600K 100K, but we find that no atmospheric model can
adequately fit all the fluxes of GJ758 B. The photometry of the new candidate
companion is broadly consistent with L-type objects, but a second epoch with
improved photometry is necessary to clarify its status. The new astrometry of
GJ758 B shows a significant proper motion since the last epoch. We use this
result to improve the determination of the orbital characteristics using two
fitting approaches, Least-Square Monte Carlo and Markov Chain Monte Carlo.
Finally, we analyze the sensitivity of our data to additional closer-in
companions and reject the possibility of other massive brown dwarf companions
down to 4-5 AU. [abridged]Comment: 20 pages, 15 figures. Accepted for publication in A&
Characterizing preclinical sub-phenotypic models of acute respiratory distress syndrome:An experimental ovine study
Abstract The acute respiratory distress syndrome (ARDS) describes a heterogenous population of patients with acute severe respiratory failure. However, contemporary advances have begun to identify distinct sub‐phenotypes that exist within its broader envelope. These sub‐phenotypes have varied outcomes and respond differently to several previously studied interventions. A more precise understanding of their pathobiology and an ability to prospectively identify them, may allow for the development of precision therapies in ARDS. Historically, animal models have played a key role in translational research, although few studies have so far assessed either the ability of animal models to replicate these sub‐phenotypes or investigated the presence of sub‐phenotypes within animal models. Here, in three ovine models of ARDS, using combinations of oleic acid and intravenous, or intratracheal lipopolysaccharide, we investigated the presence of sub‐phenotypes which qualitatively resemble those found in clinical cohorts. Principal Component Analysis and partitional clustering identified two clusters, differentiated by markers of shock, inflammation, and lung injury. This study provides a first exploration of ARDS phenotypes in preclinical models and suggests a methodology for investigating this phenomenon in future studies
Shadows and spirals in the protoplanetary disk HD 100453
Understanding the diversity of planets requires to study the morphology and
the physical conditions in the protoplanetary disks in which they form. We
observed and spatially resolved the disk around the ~10 Myr old protoplanetary
disk HD 100453 in polarized scattered light with SPHERE/VLT at optical and
near-infrared wavelengths, reaching an angular resolution of ~0.02", and an
inner working angle of ~0.09". We detect polarized scattered light up to ~0.42"
(~48 au) and detect a cavity, a rim with azimuthal brightness variations at an
inclination of 38 degrees, two shadows and two symmetric spiral arms. The
spiral arms originate near the location of the shadows, close to the semi major
axis. We detect a faint spiral-like feature in the SW that can be interpreted
as the scattering surface of the bottom side of the disk, if the disk is
tidally truncated by the M-dwarf companion currently seen at a projected
distance of ~119 au. We construct a radiative transfer model that accounts for
the main characteristics of the features with an inner and outer disk
misaligned by ~72 degrees. The azimuthal brightness variations along the rim
are well reproduced with the scattering phase function of the model. While
spirals can be triggered by the tidal interaction with the companion, the close
proximity of the spirals to the shadows suggests that the shadows could also
play a role. The change in stellar illumination along the rim, induces an
azimuthal variation of the scale height that can contribute to the brightness
variations. Dark regions in polarized images of transition disks are now
detected in a handful of disks and often interpreted as shadows due to a
misaligned inner disk. The origin of such a misalignment in HD 100453, and of
the spirals, is unclear, and might be due to a yet-undetected massive companion
inside the cavity, and on an inclined orbit.Comment: A&A, accepte
First light of the VLT planet finder SPHERE. II. The physical properties and the architecture of the young systems PZ Tel and HD 1160 revisited
[Abridged] Context. The young systems PZ Tel and HD 1160, hosting known
low-mass companions, were observed during the commissioning of the new planet
finder SPHERE with several imaging and spectroscopic modes. Aims. We aim to
refine the physical properties and architecture of both systems. Methods. We
use SPHERE commissioning data and REM observations, as well as literature and
unpublished data from VLT/SINFONI, VLT/NaCo, Gemini/NICI, and Keck/NIRC2.
Results. We derive new photometry and confirm the nearly daily photometric
variability of PZ Tel A. Using literature data spanning 38 yr, we show that the
star also exhibits a long-term variability trend. The 0.63-3.8 mic SED of PZ
Tel B allows us to revise its properties: spectral type M7+/-1, Teff=2700+/-100
K, log(g)<4.5 dex, log(L/L_Sun)=-2.51+/-0.10 dex, and mass 38-72 MJ. The 1-3.8
mic SED of HD 1160 B suggests a massive brown dwarf or a low-mass star with
spectral type M5.5-7.0, Teff=3000+/-100 K, [M/H]=-0.5-0.0 dex,
log(L/L_Sun)=-2.81+/-0.10 dex, and mass 39-168 MJ. We confirm the deceleration
and high eccentricity (e>0.66) of PZ Tel B. For e<0.9, the inclination,
longitude of the ascending node, and time of periastron passage are well
constrained. The system is seen close to an edge-on geometry. We reject other
brown dwarf candidates outside 0.25" for both systems, and massive giant
planets (>4 MJ) outside 0.5" for the PZ Tel system. We also show that K1-K2
color can be used with YJH low-resolution spectra to identify young L-type
companions, provided high photometric accuracy (<0.05 mag) is achieved.
Conclusions. SPHERE opens new horizons in the study of young brown dwarfs and
giant exoplanets thanks to high-contrast imaging capabilities at optical and
near-infrared wavelengths, as well as high signal-to-noise spectroscopy in the
near-infrared from low (R~30-50) to medium resolutions (R~350).Comment: 25 pages, 23 figures, accepted for publication in A&A on Oct. 13th,
2015; version including language editing. Typo on co-author name on astroph
page corrected, manuscript unchange
- …