463 research outputs found

    Enhancing residual trapping of supercritical CO2 via cyclic injections

    Get PDF
    We utilize synchrotron X-ray tomographic imaging to investigate the pore-scale characteristics and residual trapping of supercritical CO2 (scCO2) over the course of multiple drainage-imbibition (D-I) cycles in Bentheimer sandstone cores. Capillary pressure measurements are paired with X-ray image-derived saturation and connectivity metrics which describe the extent of drainage and subsequent residual (end of imbibition) scCO2 trapping. For the first D-I cycle, residual scCO2 trapping is suppressed due to high imbibition capillary number (Ca ≈ 10−6); however, residual scCO2 trapping dramatically increases for subsequent D-I cycles carried out at the same Ca value. This behavior is not predicted by conventional multiphase trapping theory. The magnitude of scCO2 trapping increase is hysteretic and depends on the relative extent of the sequential drainage processes. The hysteretic pore-scale behavior of the scCO2-brine-sandstone system observed in this study suggests that cyclic multiphase flow could potentially be used to increase scCO2 trapping for sequestration applications

    The effect of non-uniform microscale distribution of sorption sites on solute diffusion in soil

    Get PDF
    Conventional models of solute transport in soil consider only soil volumes large enough to average over microscale heterogeneities, and it is assumed that microscale variations are unimportant at the macroscale. In this research we test this assumption for cases in which the microscale distribution of solute-sorbing sites is patchy. We obtain a set of equations at the macroscale that allow for the effect of the microscale distribution with the mathematical technique of homogenization. We combine these equations with an image-based model that describes the true microscale pore geometry in a real, structured soil measured with X-ray computed tomography. The resulting models are used to test the microscale averaging assumptions inherent in conventional models. We show that, in general, macroscale diffusion is little affected by microscale variation in the distribution of sorption sites. Therefore, for most purposes the assumption of microscale averaging used in conventional models is justified. The effects of microscale heterogeneity are noticeable only when (i) the rate of sorption is slow compared with diffusion, but still fast enough to affect macroscale transport and (ii) the defined macroscale volume approaches the microscale. We discuss the effects when these conditions are me

    Incorporating bubble evolution and transport in constitutive relationships for quasi- and non-equilibrium two-phase flows in porous media

    Get PDF
    There is a need to better understand the presence and transport of bubbles in multi-phase subsurface porous media so that these processes can be accurately described, and more efficient engineered solutions can be developed. To this end, constitutive relationships between geometric state variables (fluid-fluid curvature, Jnw; non-wetting phase volume, Vn; fluid-fluid interfacial area, anw; and Euler characteristic, χn) have become increasingly more common in efforts to uniquely predict the state of a two-fluid flow system. Both lattice Boltzmann simulations and fast X-ray microtomography (μCT) imaging experiments have shown that a geometric state function using the non-dimensionalized invariant properties of saturation, specific interfacial area, and Euler characteristic can uniquely predict the mean curvature of the system for both quasi- and non-equilibrium conditions, however, the presence of bubble evolution and the subsequent transport phenomena have not been explored. This study investigates whether the geometric state function remains unique with the inclusion of bubble generation and transport under quasi- and non-equilibrium two-fluid flow. The data presented here suggests that bubble formation and entrapment occur in a manner that cannot be predicted by the more traditional capillary pressure-saturation-interfacial area, Pc(Sw, anw), relationship, and further extensions to the constitutive relationship are needed to fully capture these mechanisms

    Using synchrotron-based X-Ray microtomography and functional contrast agents in environmental applications

    Get PDF
    Despite very rapid development in commercial X-ray tomography technology, synchrotron-based tomography facilities still have a number of advantages over conventional systems. The high photon flux inherent of synchrotron radiation sources allows for (i) high resolution to micro- or nanometer scales depending on the individual beamline, (ii) rapid acquisition times that allow for collection of sufficient data for statistically significant results in a short amount of time as well as prevention of temporal changes that would take place during longer scan times, and (iii) optimal implementation of contrast agents that allow us to resolve features that would not be decipherable in scans obtained with a polychromatic radiation source. This chapter highlights recent advances in capabilities at synchrotron sources, as well as implementation of synchrotron-based computed microtomography (CMT) to two topics of interest to researchers in the soil science, hydrology, and environmental engineering fields, namely multiphase flow in porous media and characterization of biofilm architecture in porous media. In both examples, we make use of contrast agents and photoelectric edge-specic scanning (single- or dual-energy type), in combination with advanced image processing techniques

    Influence of microstructural properties on geophysical measurements in sand-clay mixtures

    Get PDF
    We have performed a series of laboratory experiments on saturated sand-clay mixtures. Measurements include frequency-dependent electrical properties using the four-electrode technique (10 niHz to 1 MHz), permeability, porosity, and acoustic velocities. We mixed clean Ottawa (quartz) sand with Na-montmorillonite (Wyoming bentonite) in a number of different configurations containing 0 to 10% clay: as a dispersed mixture, as discrete clay clusters, and arranged in distinct layers. Solutions of CaCl{sub 2} ranging from 0.0005 N to 0.75 N (0.05 to 64 mS/cm) and deionized water were used as saturating fluids. We found the electrical properties to be dependent on clay content, fluid conductivity, and microstructure in a complex fashion. Increasing fluid conductivity and increasing clay content generally resulted in higher electrical conductivity. For an individual sample, two main regions of conduction exist: a region dominated by surface conduction and a region where the ionic strength of the saturating fluid controlled conduction. The sample geometry (dispersed, nondispersed, or layered clay configuration) was found to greatly affect the magnitude of the surface conductance in the range of low fluid conductivity
    • …
    corecore