27 research outputs found

    Viscoelasticity Mapping by Identification of Local Shear Wave Dynamics

    No full text
    Estimation of soft tissue elasticity is of interest in several clinical applications. For instance, tumors and fibrotic lesions are notoriously stiff compared with benign tissue. A fully quantitative measure of lesion stiffness can be obtained by shear wave (SW) elastography. This method uses an acoustic radiation force to produce laterally propagating SWs that can be tracked to obtain the velocity, which in turn is related to Young's modulus. However, not only elasticity, but also viscosity plays an important role in the propagation process of SWs. In fact, viscosity itself is a parameter of diagnostic value for the detection and characterization of malignant lesions. In this paper, we describe a new method that enables imaging viscosity from SW elastography by local model-based system identification. By testing the method on simulated data sets and performing in vitro experiments, we show that the ability of the proposed technique to generate parametric maps of the viscoelastic material properties from SW measurements, opening up new possibilities for noninvasive tissue characterizatio

    Artificial intelligence in multiparametric prostate cancer imaging with focus on deep-learning methods

    Get PDF
    Prostate cancer represents today the most typical example of a pathology whose diagnosis requires multiparametric imaging, a strategy where multiple imaging techniques are combined to reach an acceptable diagnostic performance. However, the reviewing, weighing and coupling of multiple images not only places additional burden on the radiologist, it also complicates the reviewing process. Prostate cancer imaging has therefore been an important target for the development of computer-aided diagnostic (CAD) tools. In this survey, we discuss the advances in CAD for prostate cancer over the last decades with special attention to the deep-learning techniques that have been designed in the last few years. Moreover, we elaborate and compare the methods employed to deliver the CAD output to the operator for further medical decision making

    Shear-Wave Particle-Velocity Estimation and Enhancement Using a Multi-Resolution Convolutional Neural Network

    Get PDF
    Objective: Tissue mechanical properties are valuable markers for tissue characterization, aiding in the detection and staging of pathologies. Shear wave elastography (SWE) offers a quantitative assessment of tissue mechanical characteristics based on the SW propagation profile, which is derived from the SW particle motion. Improving the signal-to-noise ratio (SNR) of the SW particle motion would directly enhance the accuracy of the material property estimates such as elasticity or viscosity. Methods: In this paper, we present a 3-D multi-resolution convolutional neural network (MRCNN) to perform improved estimation of the SW particle velocity V. Additionally, we propose a novel approach to generate training data from real acquisitions, providing high SNR ground truth target data, one-to-one paired to inputs that are corrupted with real-world noise and disturbances. Discussion: By testing the network on in vitro data acquired from a commercial breast elastography phantom, we show that the MRCNN outperforms Loupas’ autocorrelation algorithm with an improved SNR of 4.47 dB for the V signals, a two-fold decrease in the standard deviation of the downstream elasticity estimates, and a two-fold increase in the contrast-to-noise ratio of the elasticity maps. The generalizability of the network was further demonstrated with a set of ex vivo porcine liver data. Conclusion: The proposed MRCNN outperforms the standard autocorrelation method, in particular in low SNR regimes

    3-D multi-parametric contrast-enhanced ultrasound for the prediction of prostate cancer

    Get PDF
    Trans-rectal ultrasound-guided 12-core systematic biopsy (SBx) is the standard diagnostic pathway for prostate cancer (PCa) because of a lack of sufficiently accurate imaging. Quantification of 3-D dynamic contrast-enhanced ultrasound (US) might open the way for a targeted procedure in which biopsies are directed at lesions suspicious on imaging. This work describes the expansion of contrast US dispersion imaging algorithms to 3-D and compares its performance against malignant and benign disease. Furthermore, we examined the feasibility of a multi-parametric approach to predict SBx-core outcomes using machine learning. An area under the receiver operating characteristic (ROC) curve of 0.76 and 0.81 was obtained for all PCa and significant PCa, respectively, an improvement over previous US methods. We found that prostatitis, in particular, was a source of false-positive readings

    Viscoelasticity Mapping by Identification of Local Shear Wave Dynamics

    No full text

    Contrast-Enhanced Ultrasound Quantification: From Kinetic Modeling To Machine Learning

    Get PDF
    Ultrasound contrast agents (UCAs) have opened up immense diagnostic possibilities by combined use of indicator dilution principles and dynamic contrast-enhanced ultrasound (DCE-US) imaging. UCAs are microbubbles encapsulated in a biocompatible shell. With a rheology comparable to that of red blood cells, UCAs provide an intravascular indicator for functional imaging of the (micro)vasculature by quantitative DCE-US. Several models of the UCA intravascular kinetics have been proposed to provide functional quantitative maps, aiding diagnosis of different pathological conditions. This article is a comprehensive review of the available methods for quantitative DCE-US imaging based on temporal, spatial and spatiotemporal analysis of the UCA kinetics. The recent introduction of novel UCAs that are targeted to specific vascular receptors has advanced DCE-US to a molecular imaging modality. In parallel, new kinetic models of increased complexity have been developed. The extraction of multiple quantitative maps, reflecting complementary variables of the underlying physiological processes, requires an integrative approach to their interpretation. A probabilistic framework based on emerging machine-learning methods represents nowadays the ultimate approach, improving the diagnostic accuracy of DCE-US imaging by optimal combination of the extracted complementary information. The current value and future perspective of all these advances are critically discussed. (E-mail: [email protected]) (C) 2019 World Federation for Ultrasound in Medicine & Biology. All rights reserved

    A Comparison of Single- and Multiple- Tracking Location Shear Wave Elastography (SWE) for Viscosity Mapping by System Identification (SI)

    No full text
    Viscosity has been shown to be a tissue property of diagnostic value that plays an important role in the propagation of shear waves. Recently, system identification (SI) techniques have been proposed for the estimation of tissue viscoelasticity maps. Here, we compare the performance of SI-based viscosity imaging by multiple tracking location (MTL) shear wave elastography (SWE) and by single tracking location (STL) SWE. The latter reduces speckle bias at the cost of using multiple push pulses to map the entire field of view

    Modelling of dynamic behaviour in magnetic nanoparticles

    Get PDF
    The efficient development and utilisation of magnetic nanoparticles (MNPs) for applications in enhanced biosensing relies on the use of magnetisation dynamics, which are primarily governed by the time-dependent motion of the magnetisation due to externally applied magnetic fields. An accurate description of the physics involved is complex and not yet fully understood, especially in the frequency range where Néel and Brownian relaxation processes compete. However, even though it is well known that non-zero, non-static local fields significantly influence these magnetisation dynamics, the modelling of magnetic dynamics for MNPs often uses zero-field dynamics or a static Langevin approach. In this paper, we developed an approximation to model and evaluate its performance for MNPs exposed to a magnetic field with varying amplitude and frequency. This model was initially developed to predict superparamagnetic nanoparticle behaviour in differential magnetometry applications but it can also be applied to similar techniques such as magnetic particle imaging and frequency mixing. Our model was based upon the Fokker–Planck equations for the two relaxation mechanisms. The equations were solved through numerical approximation and they were then combined, while taking into account the particle size distribution and the respective anisotropy distribution. Our model was evaluated for Synomag®-D70, Synomag®-D50 and SHP-15, which resulted in an overall good agreement between measurement and simulation
    corecore