4,730 research outputs found
Revised time-of-flight calculations for high-latitude geomagnetic pulsations using a realistic magnetospheric magnetic field model
We present a simple time-of-flight analysis of Alfvén pulsations standing on closed terrestrial magnetic field lines. The technique employed in this study in order to calculate the characteristic period of such oscillations builds upon earlier time-of-flight estimates via the implementation of a more recent magnetospheric magnetic field model. In this case the model employed is the Tsyganenko (1996) field model, which includes realistic magnetospheric currents and the consequences of the partial penetration of the interplanetary magnetic field into the dayside magnetopause. By employing a simple description of magnetospheric plasma density, we are therefore able to estimate the period of standing Alfvén waves on geomagnetic field lines over a significantly wider range of latitudes and magnetic local times than in previous studies. Furthermore, we investigate the influence of changing season and upstream interplanetary conditions upon the period of such pulsations. Finally, the eigenfrequencies of magnetic field lines computed by the time-of-flight technique are compared with corresponding numerical solutions to the wave equation and experimentally observed pulsations on geomagnetic field lines
Study of fault-tolerant software technology
Presented is an overview of the current state of the art of fault-tolerant software and an analysis of quantitative techniques and models developed to assess its impact. It examines research efforts as well as experience gained from commercial application of these techniques. The paper also addresses the computer architecture and design implications on hardware, operating systems and programming languages (including Ada) of using fault-tolerant software in real-time aerospace applications. It concludes that fault-tolerant software has progressed beyond the pure research state. The paper also finds that, although not perfectly matched, newer architectural and language capabilities provide many of the notations and functions needed to effectively and efficiently implement software fault-tolerance
An Efficient Algorithm for Enumerating Chordless Cycles and Chordless Paths
A chordless cycle (induced cycle) of a graph is a cycle without any
chord, meaning that there is no edge outside the cycle connecting two vertices
of the cycle. A chordless path is defined similarly. In this paper, we consider
the problems of enumerating chordless cycles/paths of a given graph
and propose algorithms taking time for each chordless cycle/path. In
the existing studies, the problems had not been deeply studied in the
theoretical computer science area, and no output polynomial time algorithm has
been proposed. Our experiments showed that the computation time of our
algorithms is constant per chordless cycle/path for non-dense random graphs and
real-world graphs. They also show that the number of chordless cycles is much
smaller than the number of cycles. We applied the algorithm to prediction of
NMR (Nuclear Magnetic Resonance) spectra, and increased the accuracy of the
prediction
Multi-model simulations of the impact of international shipping on Atmospheric Chemistry and Climate in 2000 and 2030
The global impact of shipping on atmospheric chemistry and radiative forcing, as well as the associated uncertainties, have been quantified using an ensemble of ten state-of-the-art atmospheric chemistry models and a predefined set of emission data. The analysis is performed for present-day conditions ( year 2000) and for two future ship emission scenarios. In one scenario ship emissions stabilize at 2000 levels; in the other ship emissions increase with a constant annual growth rate of 2.2% up to 2030 ( termed the "Constant Growth Scenario" (CGS)). Most other anthropogenic emissions follow the IPCC ( Intergovernmental Panel on Climate Change) SRES ( Special Report on Emission Scenarios) A2 scenario, while biomass burning and natural emissions remain at year 2000 levels. An intercomparison of the model results with observations over the Northern Hemisphere (25 degrees - 60 degrees N) oceanic regions in the lower troposphere showed that the models are capable to reproduce ozone (O-3) and nitrogen oxides (NOx= NO+ NO2) reasonably well, whereas sulphur dioxide (SO2) in the marine boundary layer is significantly underestimated. The most pronounced changes in annual mean tropospheric NO2 and sulphate columns are simulated over the Baltic and North Seas. Other significant changes occur over the North Atlantic, the Gulf of Mexico and along the main shipping lane from Europe to Asia, across the Red and Arabian Seas. Maximum contributions from shipping to annual mean near-surface O-3 are found over the North Atlantic ( 5 - 6 ppbv in 2000; up to 8 ppbv in 2030). Ship contributions to tropospheric O3 columns over the North Atlantic and Indian Oceans reach 1 DU in 2000 and up to 1.8 DU in 2030. Tropospheric O-3 forcings due to shipping are 9.8 +/- 2.0 mW/m(2) in 2000 and 13.6 +/- 2.3 mW/m(2) in 2030. Whilst increasing O-3, ship NOx simultaneously enhances hydroxyl radicals over the remote ocean, reducing the global methane lifetime by 0.13 yr in 2000, and by up to 0.17 yr in 2030, introducing a negative radiative forcing. The models show future increases in NOx and O-3 burden which scale almost linearly with increases in NOx emission totals. Increasing emissions from shipping would significantly counteract the benefits derived from reducing SO2 emissions from all other anthropogenic sources under the A2 scenario over the continents, for example in Europe. Globally, shipping contributes 3% to increases in O-3 burden between 2000 and 2030, and 4.5% to increases in sulphate under A2/CGS. However, if future ground based emissions follow a more stringent scenario, the relative importance of ship emissions will increase. Inter-model differences in the simulated O-3 contributions from ships are significantly smaller than estimated uncertainties stemming from the ship emission inventory, mainly the ship emission totals, the distribution of the emissions over the globe, and the neglect of ship plume dispersion
Timing analysis techniques at large core distances for multi-TeV gamma ray astronomy
We present an analysis technique that uses the timing information of
Cherenkov images from extensive air showers (EAS). Our emphasis is on distant,
or large core distance gamma-ray induced showers at multi-TeV energies.
Specifically, combining pixel timing information with an improved direction
reconstruction algorithm, leads to improvements in angular and core resolution
as large as ~40% and ~30%, respectively, when compared with the same algorithm
without the use of timing. Above 10 TeV, this results in an angular resolution
approaching 0.05 degrees, together with a core resolution better than ~15 m.
The off-axis post-cut gamma-ray acceptance is energy dependent and its full
width at half maximum ranges from 4 degrees to 8 degrees. For shower directions
that are up to ~6 degrees off-axis, the angular resolution achieved by using
timing information is comparable, around 100 TeV, to the on-axis angular
resolution. The telescope specifications and layout we describe here are geared
towards energies above 10 TeV. However, the methods can in principle be applied
to other energies, given suitable telescope parameters. The 5-telescope cell
investigated in this study could initially pave the way for a larger array of
sparsely spaced telescopes in an effort to push the collection area to >10 km2.
These results highlight the potential of a `sparse array' approach in
effectively opening up the energy range above 10 TeV.Comment: Published in Astroparticle Physic
- …