24 research outputs found
Novel interactions of transglutaminase-2 with heparan sulphate proteoglycans: reflection on physiological implications
This mini-review brings together information from publications and recent conference proceedings that have shed light on the biological interaction between transglutaminase-2 and heparan sulphate proteoglycans. We subsequently draw hypothesis of possible implications in the wound healing process. There is a substantial overlap in the action of transglutaminase-2 and the heparan sulphate proteoglycan syndecan-4 in normal and abnormal wound repair. Our latest findings have identified syndecan-4 as a possible binding and signalling partner of fibronectinbound TG2 and support the idea that transglutaminase-2 and syndecan-4 acts in synergy
Heparan Sulfate Proteoglycans Mediate Interstitial Flow Mechanotransduction Regulating MMP-13 Expression and Cell Motility via FAK-ERK in 3D Collagen
Interstitial flow directly affects cells that reside in tissues and regulates tissue physiology and pathology by modulating important cellular processes including proliferation, differentiation, and migration. However, the structures that cells utilize to sense interstitial flow in a 3-dimensional (3D) environment have not yet been elucidated. Previously, we have shown that interstitial flow upregulates matrix metalloproteinase (MMP) expression in rat vascular smooth muscle cells (SMCs) and fibroblasts/myofibroblasts via activation of an ERK1/2-c-Jun pathway, which in turn promotes cell migration in collagen. Herein, we focused on uncovering the flow-induced mechanotransduction mechanism in 3D.Cleavage of rat vascular SMC surface glycocalyx heparan sulfate (HS) chains from proteoglycan (PG) core proteins by heparinase or disruption of HS biosynthesis by silencing N-deacetylase/N-sulfotransferase 1 (NDST1) suppressed interstitial flow-induced ERK1/2 activation, interstitial collagenase (MMP-13) expression, and SMC motility in 3D collagen. Inhibition or knockdown of focal adhesion kinase (FAK) also attenuated or blocked flow-induced ERK1/2 activation, MMP-13 expression, and cell motility. Interstitial flow induced FAK phosphorylation at Tyr925, and this activation was blocked when heparan sulfate proteoglycans (HSPGs) were disrupted. These data suggest that HSPGs mediate interstitial flow-induced mechanotransduction through FAK-ERK. In addition, we show that integrins are crucial for mechanotransduction through HSPGs as they mediate cell spreading and maintain cytoskeletal rigidity.We propose a conceptual mechanotransduction model wherein cell surface glycocalyx HSPGs, in the presence of integrin-mediated cell-matrix adhesions and cytoskeleton organization, sense interstitial flow and activate the FAK-ERK signaling axis, leading to upregulation of MMP expression and cell motility in 3D. This is the first study to describe a flow-induced mechanotransduction mechanism via HSPG-mediated FAK activation in 3D. This study will be of interest in understanding the flow-related mechanobiology in vascular lesion formation, tissue morphogenesis, cancer cell metastasis, and stem cell differentiation in 3D, and also has implications in tissue engineering
Specific Syndecan-1 Domains Regulate Mesenchymal Tumor Cell Adhesion, Motility and Migration
Malignant mesothelioma is an asbestos induced cancer that is difficult to diagnose.
Several studies have combined biomarkers to improve mesothelioma diagnosis, but
with moderate success, and there is a need for new mesothelioma biomarkers. The
tumour is often resistant to treatment and most patients will survive less than a year.
An indicator of patient survival is the tumours growth pattern, which in turn is
influenced by expressed proteoglycans.
In this thesis work, we aim to improve the possibilities to diagnose malignant
mesothelioma by combining biomarkers and by identifying new ones. We also
investigate tumour driving mechanisms with focus on one of these suggested
biomarkers, the cell-bound proteoglycan syndecan-1.
We were able to construct a diagnostic two-step model based on biomarkers in patient
material. By implementing a cut-off level and thereafter focusing on unresolved patients
we combined hyaluronan and N-ERC/mesothelin (paper I), which significantly increased
the diagnostic accuracy for malignant mesothelioma. To further improve diagnosis, we
used mass spectrometry to find new biomarkers. We identified and validated galectin-1,
which was excellent in discriminating mesotheliomas from adenocarcinomas (paper II).
In the same study, we were also the first to describe aldo-keto reductase 1B10 as a
novel prognostic mesothelioma biomarker.
Syndecan-1 has been indicated as a marker for carcinomas. In paper I we describe how
higher levels of syndecan-1 indicate the presence of a carcinoma over a mesothelioma.
This was verified in paper II when syndecan-1 was identified as downregulated in fluids
from mesothelioma patients compared to lung cancer patients. Paper III and paper IV
focus on this proteoglycan.
Malignant cell lines transfected with syndecan-1 and various truncated forms of
syndecan-1 affected adhesion and migration, which are key features of cancer invasion
(paper III). The results showed a domain- and cell type specific effect on the cellsβ
motility. Regulating syndecan-1 levels and analysing the global gene expression of
mesothelioma cells made it evident that this proteoglycan has a strong influence on
transforming growth factor Ξ² signalling and several growth factor pathways (paper IV).
Links to cell migration and proliferation were furthermore identified, along with
glycosaminoglycan modifying enzymes. These results can shed light on the complex role
of syndecan-1 in invasion and growth of malignant mesenchymal cells.
Taken together, this thesis work describes a complement to conventional mesothelioma
diagnosis and identifies novel biomarkers. Furthermore, the potential biomarker
syndecan-1 was shown to have an effect on cell motility and proliferation. These results
increase our understanding of this aggressive malignancy
Study protocol for a group randomized controlled trial of a classroom-based intervention aimed at preventing early risk factors for drug abuse: integrating effectiveness and implementation research
<p>Abstract</p> <p>Background</p> <p>While a number of preventive interventions delivered within schools have shown both short-term and long-term impact in epidemiologically based randomized field trials, programs are not often sustained with high-quality implementation over time. This study was designed to support two purposes. The first purpose was to test the effectiveness of a universal classroom-based intervention, the Whole Day First Grade Program (WD), aimed at two early antecedents to drug abuse and other problem behaviors, namely, aggressive, disruptive behavior and poor academic achievement. The second purpose--the focus of this paper--was to examine the utility of a multilevel structure to support high levels of implementation during the effectiveness trial, to sustain WD practices across additional years, and to train additional teachers in WD practices.</p> <p>Methods</p> <p>The WD intervention integrated three components, each previously tested separately: classroom behavior management; instruction, specifically reading; and family-classroom partnerships around behavior and learning. Teachers and students in 12 schools were randomly assigned to receive either the WD intervention or the standard first-grade program of the school system (SC). Three consecutive cohorts of first graders were randomized within schools to WD or SC classrooms and followed through the end of third grade to test the effectiveness of the WD intervention. Teacher practices were assessed over three years to examine the utility of the multilevel structure to support sustainability and scaling-up.</p> <p>Discussion</p> <p>The design employed in this trial appears to have considerable utility to provide data on WD effectiveness and to inform the field with regard to structures required to move evidence-based programs into practice.</p> <p>Trial Registration</p> <p><b>Clinical Trials Registration Number</b>: NCT00257088</p
A Conserved Role for Syndecan Family Members in the Regulation of Whole-Body Energy Metabolism
Syndecans are a family of type-I transmembrane proteins that are involved in cell-matrix adhesion, migration, neuronal development, and inflammation. Previous quantitative genetic studies pinpointed Drosophila Syndecan (dSdc) as a positional candidate gene affecting variation in fat storage between two Drosophila melanogaster strains. Here, we first used quantitative complementation tests with dSdc mutants to confirm that natural variation in this gene affects variability in Drosophila fat storage. Next, we examined the effects of a viable dSdc mutant on Drosophila whole-body energy metabolism and associated traits. We observed that young flies homozygous for the dSdc mutation had reduced fat storage and slept longer than homozygous wild-type flies. They also displayed significantly reduced metabolic rate, lower expression of spargel (the Drosophila homologue of PGC-1), and reduced mitochondrial respiration. Compared to control flies, dSdc mutants had lower expression of brain insulin-like peptides, were less fecund, more sensitive to starvation, and had reduced life span. Finally, we tested for association between single nucleotide polymorphisms (SNPs) in the human SDC4 gene and variation in body composition, metabolism, glucose homeostasis, and sleep traits in a cohort of healthy early pubertal children. We found that SNP rs4599 was significantly associated with resting energy expenditure (Pβ=β0.001 after Bonferroni correction) and nominally associated with fasting glucose levels (Pβ=β0.01) and sleep duration (Pβ=β0.044). On average, children homozygous for the minor allele had lower levels of glucose, higher resting energy expenditure, and slept shorter than children homozygous for the common allele. We also observed that SNP rs1981429 was nominally associated with lean tissue mass (Pβ=β0.035) and intra-abdominal fat (Pβ=β0.049), and SNP rs2267871 with insulin sensitivity (Pβ=β0.037). Collectively, our results in Drosophila and humans argue that syndecan family members play a key role in the regulation of body metabolism
Syndecan-4 Is Essential for Development of Concentric Myocardial Hypertrophy via Stretch-Induced Activation of the Calcineurin-NFAT Pathway
Sustained pressure overload leads to compensatory myocardial hypertrophy and subsequent heart failure, a leading cause of morbidity and mortality. Further unraveling of the cellular processes involved is essential for development of new treatment strategies. We have investigated the hypothesis that the transmembrane Z-disc proteoglycan syndecan-4, a co-receptor for integrins, connecting extracellular matrix proteins to the cytoskeleton, is an important signal transducer in cardiomyocytes during development of concentric myocardial hypertrophy following pressure overload. Echocardiographic, histochemical and cardiomyocyte size measurements showed that syndecan-4β/β mice did not develop concentric myocardial hypertrophy as found in wild-type mice, but rather left ventricular dilatation and dysfunction following pressure overload. Protein and gene expression analyses revealed diminished activation of the central, pro-hypertrophic calcineurin-nuclear factor of activated T-cell (NFAT) signaling pathway. Cardiomyocytes from syndecan-4β/β-NFAT-luciferase reporter mice subjected to cyclic mechanical stretch, a hypertrophic stimulus, showed minimal activation of NFAT (1.6-fold) compared to 5.8-fold increase in NFAT-luciferase control cardiomyocytes. Accordingly, overexpression of syndecan-4 or introducing a cell-permeable membrane-targeted syndecan-4 polypeptide (gain of function) activated NFATc4 in vitro. Pull-down experiments demonstrated a direct intracellular syndecan-4-calcineurin interaction. This interaction and activation of NFAT were increased by dephosphorylation of serine 179 (pS179) in syndecan-4. During pressure overload, phosphorylation of syndecan-4 was decreased, and association between syndecan-4, calcineurin and its co-activator calmodulin increased. Moreover, calcineurin dephosphorylated pS179, indicating that calcineurin regulates its own binding and activation. Finally, patients with hypertrophic myocardium due to aortic stenosis had increased syndecan-4 levels with decreased pS179 which was associated with increased NFAT activation. In conclusion, our data show that syndecan-4 is essential for compensatory hypertrophy in the pressure overloaded heart. Specifically, syndecan-4 regulates stretch-induced activation of the calcineurin-NFAT pathway in cardiomyocytes. Thus, our data suggest that manipulation of syndecan-4 may provide an option for therapeutic modulation of calcineurin-NFAT signaling