226 research outputs found
New insights on structure and stratigraphic interpretation for assessing the hydrocarbon potentiality of the offshore Nile Delta basin, Egypt
The study area lies around the petroleum provinces of the Egyptian Offshore Nile Delta basin. The existing exploration data are sparse, and any effort made on the strati-structural interpretation is challenging for exploratory drilling campaigns, even with meager well control. Keeping in view the issues and major challenges, the authors propose new methodologies, tools and new insights into the interpretation of the existing data and information, to make the study area more attractive for investors and detailed exploration studies. The published geological work existing within the vicinity of the study area is an added value to the new insights of current interpretation and knowledge acquisition. Pliocene–Pleistocene section is the main target in the study area, since it has quality reservoirs, holding commercial hydrocarbons. Pre-salt source rocks may have charged the reservoirs in the study area. Structural complexities and heterogeneities at target levels are likely to impact the seismic wavelet property intricacies and thus the data processing qualities. Post- and pre-salt tectonics in the northern part of Sinai, the Nile Cone, and how they affect the structural framework and the seismic interpretation work in the study area are described. For the purpose of understanding the combinational trapping mechanism, stratigraphic features and the structural geology are integrated using new tools and technologies. Several strati-structural plays are interpreted in the study area that support the detailed exploration campaigns, and the existing major hydrocarbon plays associated within shelf, slope and deep-marine geological events in nearby offshore regions. Diapir salt, rotated fault blocks and growth faults within syn-sediment systems are other plays to be investigated. The study is an effort of compiled work from many published sources, putting all ideas into a positive perspective and has better understanding of new opportunities, leads and prospects for investment purposes in the Nile Delta offshore basin
MRPS18CP2 alleles and DEFA3 absence as putative chromosome 8p23.1 modifiers of hearing loss due to mtDNA mutation A1555G in the 12S rRNA gene
<p>Abstract</p> <p>Background</p> <p>Mitochondrial DNA (mtDNA) mutations account for at least 5% of cases of postlingual, nonsyndromic hearing impairment. Among them, mutation A1555G is frequently found associated with aminoglycoside-induced and/or nonsyndromic hearing loss in families presenting with extremely variable clinical phenotypes. Biochemical and genetic data have suggested that nuclear background is the main factor involved in modulating the phenotypic expression of mutation A1555G. However, although a major nuclear modifying locus was located on chromosome 8p23.1 and regardless intensive screening of the region, the gene involved has not been identified.</p> <p>Methods</p> <p>With the aim to gain insights into the factors that determine the phenotypic expression of A1555G mutation, we have analysed in detail different genetic and genomic elements on 8p23.1 region (<it>DEFA3 </it>gene absence, <it>CLDN23 </it>gene and <it>MRPS18CP2 </it>pseudogene) in a group of 213 A1555G carriers.</p> <p>Results</p> <p>Family based association studies identified a positive association for a polymorphism on <it>MRPS18CP2 </it>and an overrepresentation of <it>DEFA3 </it>gene absence in the deaf group of A1555G carriers.</p> <p>Conclusion</p> <p>Although none of the factors analysed seem to have a major contribution to the phenotype, our findings provide further evidences of the involvement of 8p23.1 region as a modifying locus for A1555G 12S rRNA gene mutation.</p
Determinants of Health-Related Quality of Life (HRQoL) in the Multiethnic Singapore Population - A National Cohort Study
Background: HRQoL is an important outcome to guide and promote healthcare. Clinical and socioeconomic factors may influence HRQoL according to ethnicity.
Methodology: A multiethnic cross-sectional national cohort (N = 7198) of the Singapore general population consisting of Chinese (N = 4873), Malay (N = 1167) and Indian (N = 1158) adults were evaluated using measures of HRQoL (SF-36 version 2), family functioning, health behaviours and clinical/laboratory assessments. Multiple regression analyses were performed to identify determinants of physical and mental HRQoL in the overall population and their potential differential effects by ethnicity. No a priori hypotheses were formulated so all interaction effects were explored.
Principal Findings: HRQoL levels differed between ethnic groups. Chinese respondents had higher physical HRQoL (PCS) than Indian and Malay participants (p<0.001) whereas mental HRQoL (MCS) was higher in Malay relative to Chinese participants (p<0.001). Regressions models explained 17.1% and 14.6% of variance in PCS and MCS respectively with comorbid burden, income and employment being associated with lower HRQoL. Age and family were associated only with MCS. The effects of gender, stroke and musculoskeletal conditions on PCS varied by ethnicity, suggesting non-uniform patterns of association for Chinese, Malay and Indian individuals.
Conclusions: Differences in HRQoL levels and determinants of HRQoL among ethnic groups underscore the need to better or differentially target population segments to promote well-being. More work is needed to explore HRQoL and wellness in relation to ethnicity
Mutation Rate Switch inside Eurasian Mitochondrial Haplogroups: Impact of Selection and Consequences for Dating Settlement in Europe
R-lineage mitochondrial DNA represents over 90% of the European population and is significantly present all around the planet (North Africa, Asia, Oceania, and America). This lineage played a major role in migration “out of Africa” and colonization in Europe. In order to determine an accurate dating of the R lineage and its sublineages, we analyzed 1173 individuals and complete mtDNA sequences from Mitomap. This analysis revealed a new coalescence age for R at 54.500 years, as well as several limitations of standard dating methods, likely to lead to false interpretations. These findings highlight the association of a striking under-accumulation of synonymous mutations, an over-accumulation of non-synonymous mutations, and the phenotypic effect on haplogroup J. Consequently, haplogroup J is apparently not a Neolithic group but an older haplogroup (Paleolithic) that was subjected to an underestimated selective force. These findings also indicated an under-accumulation of synonymous and non-synonymous mutations localized on coding and non-coding (HVS1) sequences for haplogroup R0, which contains the major haplogroups H and V. These new dates are likely to impact the present colonization model for Europe and confirm the late glacial resettlement scenario
Occipital gamma activation during Vipassana meditation
Long-term Vipassana meditators sat in meditation vs. a control rest (mind-wandering) state for 21 min in a counterbalanced design with spontaneous EEG recorded. Meditation state dynamics were measured with spectral decomposition of the last 6 min of the eyes-closed silent meditation compared to control state. Meditation was associated with a decrease in frontal delta (1–4 Hz) power, especially pronounced in those participants not reporting drowsiness during meditation. Relative increase in frontal theta (4–8 Hz) power was observed during meditation, as well as significantly increased parieto-occipital gamma (35–45 Hz) power, but no other state effects were found for the theta (4–8 Hz), alpha (8–12 Hz), or beta (12–25 Hz) bands. Alpha power was sensitive to condition order, and more experienced meditators exhibited no tendency toward enhanced alpha during meditation relative to the control task. All participants tended to exhibit decreased alpha in association with reported drowsiness. Cross-experimental session occipital gamma power was the greatest in meditators with a daily practice of 10+ years, and the meditation-related gamma power increase was similarly the strongest in such advanced practitioners. The findings suggest that long-term Vipassana meditation contributes to increased occipital gamma power related to long-term meditational expertise and enhanced sensory awareness
Common Molecular Etiologies Are Rare in Nonsyndromic Tibetan Chinese Patients with Hearing Impairment
Background: Thirty thousand infants are born every year with congenital hearing impairment in mainland China. Racial and regional factors are important in clinical diagnosis of genetic deafness. However, molecular etiology of hearing impairment in the Tibetan Chinese population living in the Tibetan Plateau has not been investigated. To provide appropriate genetic testing and counseling to Tibetan families, we investigated molecular etiology of nonsyndromic deafness in this population. Methods: A total of 114 unrelated deaf Tibetan children from the Tibet Autonomous Region were enrolled. Five prominent deafness-related genes, GJB2, SLC26A4, GJB6, POU3F4, and mtDNA 12S rRNA, were analyzed. Inner ear development was evaluated by temporal CT. A total of 106 Tibetan hearing normal individuals were included as genetic controls. For radiological comparison, 120 patients, mainly of Han ethnicity, with sensorineural hearing loss were analyzed by temporal CT. Results: None of the Tibetan patients carried diallelic GJB2 or SLC26A4 mutations. Two patients with a history of aminoglycoside usage carried homogeneous mtDNA 12S rRNA A1555G mutation. Two controls were homozygous for 12S rRNA A1555G. There were no mutations in GJB6 or POU3F4. A diagnosis of inner ear malformation was made in 20.18 % of the Tibetan patients and 21.67 % of the Han deaf group. Enlarged vestibular aqueduct, the most common inner ear deformity, was not found in theTibetan patients, but was seen in 18.33 % of the Han patients. Common molecular etiologies
Historical Reconstruction Reveals Recovery in Hawaiian Coral Reefs
Coral reef ecosystems are declining worldwide, yet regional differences in the trajectories, timing and extent of degradation highlight the need for in-depth regional case studies to understand the factors that contribute to either ecosystem sustainability or decline. We reconstructed social-ecological interactions in Hawaiian coral reef environments over 700 years using detailed datasets on ecological conditions, proximate anthropogenic stressor regimes and social change. Here we report previously undetected recovery periods in Hawaiian coral reefs, including a historical recovery in the MHI (∼AD 1400–1820) and an ongoing recovery in the NWHI (∼AD 1950–2009+). These recovery periods appear to be attributed to a complex set of changes in underlying social systems, which served to release reefs from direct anthropogenic stressor regimes. Recovery at the ecosystem level is associated with reductions in stressors over long time periods (decades+) and large spatial scales (>103 km2). Our results challenge conventional assumptions and reported findings that human impacts to ecosystems are cumulative and lead only to long-term trajectories of environmental decline. In contrast, recovery periods reveal that human societies have interacted sustainably with coral reef environments over long time periods, and that degraded ecosystems may still retain the adaptive capacity and resilience to recover from human impacts
- …