687 research outputs found

    A methodology for the generation and non-destructive characterisation of transverse fractures in long bones

    Get PDF
    Long bone fractures are common and although treatments are highly effective in most cases, it is challenging to achieve successful repair for groups such as open and periprosthetic fractures. Previous biomechanical studies of fracture repair, including computer and experimental models, have simplified the fracture with a flat geometry or a gap, and there is a need for a more accurate fracture representation to mimic the situation in-vivo. The aims of this study were to develop a methodology for generating repeatable transverse fractures in long bones in-vitro and to characterise the fracture surface using non-invasive computer tomography (CT) methods. Ten porcine femora were fractured in a custom-built rig under high-rate loading conditions to generate consistent transverse fractures (angle to femoral axis < 30 degrees). The bones were imaged using high resolution peripheral quantitative CT (HR-pQCT). A method was developed to extract the roughness and form profiles of the fracture surface from the image data using custom code and Guassian filters. The method was tested and validated using artificially generated waveforms. The results revealed that the smoothing algorithm used in the script was robust but the optimum kernel size has to be considered

    Stochastic separated flow models with applications in numerical computations of supersonic particle-laden turbulent flows

    Get PDF
    In this article, three stochastic separated flow models were applied to predict the dispersion of inertial fuel particles in the supersonic turbulent flows. The flow field of continuous phase was simulated by means of Reynolds-averaged Navier–Stokes method with a two-equation turbulence model. Clift’s expression was used to modify the drag force on the particle considering the compressibility effects. The particle-phase statistics were obtained by a secondary-order time-weighed Eulerian method. The ability of those stochastic separated flow models was then compared for predicting the mean particle velocity and the particle dispersion. For obtaining a statistically stationary solution, the stochastic separated flow model required the largest number of computational particles, whereas the improved stochastic separated flow model was found to need the least. The time-series stochastic separation flow model lay in-between. Compared with the other two models, the particle dispersion was over-predicted by the stochastic separated flow model in the supersonic particle-laden boundary layer flow, while the improved stochastic separated flow model was less predictable for the particle spatial distribution in the particle-laden strut-injection flow. Three models could well predict the mean velocities of the particle phase. This study is valuable for selecting a validated model used for predicting the particle dispersion in supersonic turbulent flows

    Modified gravity from the quantum part of the metric

    Full text link

    Using a conceptual framework during learning attenuates the loss of expert-type knowledge structure

    Get PDF
    BACKGROUND: During evolution from novice to expert, knowledge structure develops into an abridged network organized around pathophysiological concepts. The objectives of this study were to examine the change in knowledge structure in medical students in one year and to investigate the association between the use of a conceptual framework (diagnostic scheme) and long-term knowledge structure. METHODS: Medical students' knowledge structure of metabolic alkalosis was studied after instruction and one year later using concept-sorting. Knowledge structure was labeled 'expert-type' if students shared ≄ 2 concepts with experts and 'novice-type' if they shared < 2 concepts. Conditional logistic regression was used to study the association between short-term knowledge structure, the use of a diagnostic scheme and long-term knowledge structure. RESULTS: Thirty-four medical students completed the concept-sorting task on both occasions. Twenty-four used a diagnostic scheme for metabolic alkalosis. Short-term knowledge structure was not a correlate of long-term knowledge structure, whereas use of a diagnostic scheme was associated with increased odds of expert-type long-term knowledge structure (odds ratio 12.6 [1.4, 116.0], p = 0.02). There was an interaction between short-term knowledge structure and the use of a diagnostic scheme. In the group who did not use a diagnostic scheme the number of students changing from expert-type to novice-type was greater than vice versa (p = 0.046). There was no significant change in the group that used the diagnostic scheme (p = 0.6). CONCLUSION: The use of a diagnostic scheme by students may attenuate the loss of expert-type knowledge structure

    Integrated Ecosystem Assessment: Lake Ontario Water Management

    Get PDF
    BACKGROUND: Ecosystem management requires organizing, synthesizing, and projecting information at a large scale while simultaneously addressing public interests, dynamic ecological properties, and a continuum of physicochemical conditions. We compared the impacts of seven water level management plans for Lake Ontario on a set of environmental attributes of public relevance. METHODOLOGY AND FINDINGS: Our assessment method was developed with a set of established impact assessment tools (checklists, classifications, matrices, simulations, representative taxa, and performance relations) and the concept of archetypal geomorphic shoreline classes. We considered each environmental attribute and shoreline class in its typical and essential form and predicted how water level change would interact with defining properties. The analysis indicated that about half the shoreline of Lake Ontario is potentially sensitive to water level change with a small portion being highly sensitive. The current water management plan may be best for maintaining the environmental resources. In contrast, a natural water regime plan designed for greatest environmental benefits most often had adverse impacts, impacted most shoreline classes, and the largest portion of the lake coast. Plans that balanced multiple objectives and avoided hydrologic extremes were found to be similar relative to the environment, low on adverse impacts, and had many minor impacts across many shoreline classes. SIGNIFICANCE: The Lake Ontario ecosystem assessment provided information that can inform decisions about water management and the environment. No approach and set of methods will perfectly and unarguably accomplish integrated ecosystem assessment. For managing water levels in Lake Ontario, we found that there are no uniformly good and bad options for environmental conservation. The scientific challenge was selecting a set of tools and practices to present broad, relevant, unbiased, and accessible information to guide decision-making on a set of management options

    Age-related delay in information accrual for faces: Evidence from a parametric, single-trial EEG approach

    Get PDF
    Background: In this study, we quantified age-related changes in the time-course of face processing by means of an innovative single-trial ERP approach. Unlike analyses used in previous studies, our approach does not rely on peak measurements and can provide a more sensitive measure of processing delays. Young and old adults (mean ages 22 and 70 years) performed a non-speeded discrimination task between two faces. The phase spectrum of these faces was manipulated parametrically to create pictures that ranged between pure noise (0% phase information) and the undistorted signal (100% phase information), with five intermediate steps. Results: Behavioural 75% correct thresholds were on average lower, and maximum accuracy was higher, in younger than older observers. ERPs from each subject were entered into a single-trial general linear regression model to identify variations in neural activity statistically associated with changes in image structure. The earliest age-related ERP differences occurred in the time window of the N170. Older observers had a significantly stronger N170 in response to noise, but this age difference decreased with increasing phase information. Overall, manipulating image phase information had a greater effect on ERPs from younger observers, which was quantified using a hierarchical modelling approach. Importantly, visual activity was modulated by the same stimulus parameters in younger and older subjects. The fit of the model, indexed by R2, was computed at multiple post-stimulus time points. The time-course of the R2 function showed a significantly slower processing in older observers starting around 120 ms after stimulus onset. This age-related delay increased over time to reach a maximum around 190 ms, at which latency younger observers had around 50 ms time lead over older observers. Conclusion: Using a component-free ERP analysis that provides a precise timing of the visual system sensitivity to image structure, the current study demonstrates that older observers accumulate face information more slowly than younger subjects. Additionally, the N170 appears to be less face-sensitive in older observers

    A combined numerical and experimental study of the 3D tumble structure and piston boundary layer development during the intake stroke of a gasoline engine

    Get PDF
    Due to its positive effect on flame propagation in the case of a well-defined breakdown, the formation of a large-scale tumble motion is an important goal in engine development. Cycle-to-cycle variations (CCV) in the tumble position and strength however lead to a fluctuating tumble breakdown in space and time and therefore to combustion variations, indicated by CCV of the peak pressure. This work aims at a detailed investigation of the large-scale tumble motion and its interaction with the piston boundary layer during the intake stroke in a state-of-the-art gasoline engine. To allow the validation of the flow near the piston surface obtained by simulation, a new measurement technique called “Flying PIV” is applied. A detailed comparison between experimental and simulation results is carried out as well as an analysis of the obtained flow field. The large-scale tumble motion is investigated based on numerical data of multiple highly resolved intake strokes obtained using scale-resolving simulations. A method to detect the tumble center position within a 3D flow field, as an extension of previously developed 2D and 3D algorithms, is presented and applied. It is then used to investigate the phase-averaged tumble structure, its characteristics in terms of angular velocity and the CCV between the individual intake strokes. Finally, an analysis is presented of the piston boundary layer and how it is influenced by the tumble motion during the final phase of the intake stroke

    Novel interactions of transglutaminase-2 with heparan sulphate proteoglycans: reflection on physiological implications

    Get PDF
    This mini-review brings together information from publications and recent conference proceedings that have shed light on the biological interaction between transglutaminase-2 and heparan sulphate proteoglycans. We subsequently draw hypothesis of possible implications in the wound healing process. There is a substantial overlap in the action of transglutaminase-2 and the heparan sulphate proteoglycan syndecan-4 in normal and abnormal wound repair. Our latest findings have identified syndecan-4 as a possible binding and signalling partner of fibronectinbound TG2 and support the idea that transglutaminase-2 and syndecan-4 acts in synergy
    • 

    corecore