103 research outputs found
4-H Dairy Project
This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu
Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder
The variability in phenotypic presentations and the lack of consistency of genetic associations in mental illnesses remain a major challenge in molecular psychiatry. Recently, it has become increasingly clear that altered promoter DNA methylation could play a critical role in mediating differential regulation of genes and in facilitating short-term adaptation in response to the environment. Here, we report the investigation of the differential activity of membrane-bound catechol-O-methyltransferase (MB - COMT) due to altered promoter methylation and the nature of the contribution of COMT Val158Met polymorphism as risk factors for schizophrenia and bipolar disorder by analyzing 115 post-mortem brain samples from the frontal lobe. These studies are the first to reveal that the MB - COMT promoter DNA is frequently hypomethylated in schizophrenia and bipolar disorder patients, compared with the controls (methylation rate: 26 and 29 versus 60; P = 0.004 and 0.008, respectively), particularly in the left frontal lobes (methylation rate: 29 and 30 versus 81; P = 0.003 and 0.002, respectively). Quantitative gene-expression analyses showed a corresponding increase in transcript levels of MB - COMT in schizophrenia and bipolar disorder patients compared with the controls (P = 0.02) with an accompanying inverse correlation between MB - COMT and DRD1 expression. Furthermore, there was a tendency for the enrichment of the Val allele of the COMT Val158Met polymorphism with MB - COMT hypomethylation in the patients. These findings suggest that MB - COMT over-expression due to promoter hypomethylation and/or hyperactive allele of COMT may increase dopamine degradation in the frontal lobe providing a molecular basis for the shared symptoms of schizophrenia and bipolar disorder. © Copyright 2006 Oxford University Press
Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: A preliminary report
DNA methylation changes could provide a mechanism for DNA plasticity and dynamism for short-term adaptation, enabling a type of cell memory to register cellular history under different environmental conditions. Some environmental insults may also result in pathological methylation with corresponding alteration of gene expression patterns. Evidence from several studies has suggested that in schizophrenia and bipolar disorder, mRNA of the reelin gene (RELN), which encodes a protein necessary for neuronal migration, axonal branching, synaptogenesis, and cell signaling, is severely reduced in post-mortem brains. Therefore, we investigated the methylation status of the RELN promoter region in schizophrenic patients and normal controls as a potential mechanism for down regulation of its expression. Ten post-mortem frontal lobe brain samples from male schizophrenic patients and normal controls were obtained from the Harvard Brain Tissue Resources Center. DNA was extracted using a standard phenol-chloroform DNA extraction protocol. To evaluate differences between patients and controls, we applied methylation specific PCR (MSP) using primers localized to CpG islands flanking a potential cyclic AMP response element (CRE) and a stimulating protein-1 (SP1) binding site located in the promoter region. For each sample, DNA extraction, bisulfite treatment, and MSP were independently repeated at least four times to accurately determine the methylation status of the target region. Forty-three PCR trials were performed on the test and control samples. MSP analysis of the RELN promoter revealed an unmethylated signal in all reactions (43 of 43) using DNA from the frontal brain tissue, derived from either the schizophrenic patients or normal controls indicating that this region of the RELN promoter is predominantly unmethylated. However, we observed a distinct methylated signal in 73 of the trials (16 of 22) in schizophrenic patients compared with 24 (5 of 21) of controls. Thus, the hypermethylation of the CpG islands flanking a CRE and SP1 binding site observed at a significantly higher level (t = -5.07, P = 0.001) may provide a mechanism for the decreased RELN expression, frequently observed in post-mortem brains of schizophrenic patients. We also found an inverse relationship between the level of DNA methylation using MSP analysis and the expression of the RELN gene using semi-quantitative RT-PCR. Despite the small sample size, these studies indicate that promoter hypermethylation of the RELN gene could be a significant contributor in effecting epigenetic alterations and provides a molecular basis for the RELN gene hypoactivity in schizophrenia. Further studies with a larger sample set would be required to validate these preliminary observations. © 2005 Wiley-Liss, Inc
Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium.
Development Psychopathology in context: famil
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Prevalence, population structure and burrow morphology of the kelp-boring amphipod Sunamphitoe roberta
The recently described amphipod Sunamphitoe roberta lives only on the kelp Ecklonia maxima, where it excavates slit-like burrows along the distal margins of thicker primary fronds. Oval chambers along the bases of these slits may represent feeding areas. As burrowing proceeds, the damage progressively erodes back the frond margins, giving them characteristic attenuated and irregular profiles, and probably impacting secondary frond survival and growth, and hence kelp productivity. A kelp forest in False Bay, South Africa, was surveyed to determine what proportion of kelp was infected as well as which individuals were selected as hosts. Forty kelp heads were also dissected to ascertain numbers of amphipods per host and their size composition, and to document details of burrow structure. Of 305 adult kelps inspected, 117 (38.4%) showed visible amphipod damage. Rate of infestation was not correlated with stipe length but was positively correlated with head circumference and negatively correlated with the proportion of secondary fronds remaining. The 40 kelp heads dissected contained 786 S. roberta specimens. These comprised 154 adults (>8 mm), including 33 ovigerous females, and 632 juveniles (<8 mm). The number of amphipods per host ranged from 1 to 112 (mean 19.7 [SD 25.1]). Size distribution was bimodal, and the largest individual measured 20 mm
- …