6,501 research outputs found
The Source of Magic
This paper is an attempt to show that a large part of Western society no longer operates on the rationalist principles that most of us thought it did, but that it instead runs by magic more akin to that in fantasy works. The term âmagicâ is not meant metaphorically or in science fiction author Arthur C Clarkeâs sense that âAny sufficiently advanced technology is indistinguishable from magicâ (Clarke 1962), but is meant literally in the sense that Frazer (1890, republished 2003) used the term. This means that instead of trying to understand the present and near future by looking at the works of science fiction creators who put forth a rationalist and technological view of the world, we would understand the future better by looking to the fantasy of authors such as Jack Vance, Matthew Hughes, Ursula Le Guin, Piers Anthony and Michael Moorcock.
This magic is manifested through magical thinking and irrational behaviour, where the majority of us use literal spells and incantations in our daily interactions with each other in the networked world, and where we worship capricious gods; most importantly, those spells, incantations and worship actually work, and those gods have actually come to exist.
This paper will also show just how the spread of the computer technology propounded by scientists, technologists and SF writers has inevitably led to the creation of this irrational and magical world. This is partly because of limitations built-in to the formal systems on which these systems are based, leading to an extreme example of the law of unintended consequences. Finally, the paper will explain the mechanism by which magic is literally becoming real by reference to Frazerâs two laws of magic: the Law of Similarity and the Law of Contagion
The Armoury of His Grace the Duke of Buccleuch and Queensberry
It is rare for an historian to walk into a room and be awestruck by what he finds there. This was the authorâs experience on being invited to view the Buccleuch Collection of arms at armour at Boughton House. It comprises an outstanding collection of arms and armour spanning almost 600 years
Bed-load Transport of Mixed-size Sediment: Fractional Transport Rates, Bed Forms, and the Development of a Coarse Bed-surface Layer
Fractional transport rates, bed surface texture, and bed configuration were measured after a mixed size sediment had reached an equilibrium transport state for seven different flow strengths in a recirculating laboratory flume. Fractional transport rates were also measured at the beginning of each run when the bed was well mixed and planar. The start-up observations allow us to describe the variation of fractional transport rates with bed shear stress for a constant bed surface texture and bed configuration. The start-up and equilibrium observations together allow, for the first time, an unambiguous description of the mutual adjustment among the transport, the bed configuration, and the bed surface, as the transport system moves toward equilibrium. We find that a substantial interaction exists among the transport, bed surface, and bed configuration. Bed forms and a coarse surface layer coexist over a range of bed shear stress. Under some flow conditions the size and shape of the bed forms are controlled by the presence of the coarse surface layer. At higher flows the coarse surface layer is eliminated by scour in the lee of the bed forms. If the bed surface is defined as that over which the bed forms move, a coherent relation between the bed surface texture and the transport grain size distribution may be defined. At equilibrium the transport rates of all fractions were not equally mobile, defined as identical transport and bed grain size distributions, although equal mobility was approached for runs in which the bed shear stress was more than twice that for initial motion of the mixture. Under some flow conditions the transport was observed to adjust away from equal mobility as the bed adjusted from a well-mixed start-up condition to an equilibrium state. Development of a partial static armor, wherein some individual grains become essentially immobile even though other grains in the same fraction remain in transport, is suggested to explain these adjustments between the transport and bed surface grain size distributions. Constraints on equilibrium mixed size sediment transport are defined. The special conditions for which equal mobility must hold and the relevance to natural conditions of flume results and the equal mobility concept are discussed
Behavioral simulation and synthesis of biological neuron systems using synthesizable VHDL
Neurons are complex biological entities which form the basis of nervous systems. Insight can be gained into neuron behavior through the use of computer models and as a result many such models have been developed. However, there exists a trade-off between biological accuracy and simulation time with the most realistic results requiring extensive computation. To address this issue, a novel approach is described in this paper that allows complex models of real biological systems to be simulated at a speed greater than real time and with excellent accuracy. The approach is based on a specially developed neuron model VHDL library which allows complex neuron systems to be implemented on field programmable gate array (FPGA) hardware. The locomotion system of the nematode Caenorhabditis elegans is used as a case study and the measured results show that the real time FPGA based implementation performs 288 times faster than traditional ModelSim simulations for the same accuracy
Innovative teaching of IC design and manufacture using the Superchip platform
In this paper we describe how an intelligent chip architecture has allowed a large cohort of undergraduate students to be given effective practical insight into IC design by designing and manufacturing their own ICs. To achieve this, an efficient chip architecture, the âSuperchipâ, has been developed, which allows multiple student designs to be fabricated on a single IC, and encapsulated in a standard package without excessive cost in terms of time or resources. We demonstrate how the practical process has been tightly coupled with theoretical aspects of the degree course and how transferable skills are incorporated into the design exercise. Furthermore, the students are introduced at an early stage to the key concepts of team working, exposure to real deadlines and collaborative report writing. This paper provides details of the teaching rationale, design exercise overview, design process, chip architecture and test regime
Yield Model Characterization For Analog Integrated Circuit Using Pareto-Optimal Surface
A novel technique is proposed in this paper that achieves a yield optimized design from a set of optimal performance points on the Pareto front. Trade-offs among performance functions are explored through multi-objective optimization and Monte Carlo simulation is used to find the design point producing the best overall yield. One advantage of the approach presented is a reduction in the computational cost normally associated with Monte Carlo simulation. The technique offers a yield optimized robust circuit design solution with transistor level accuracy. An example using an OTA is presented to demonstrate the effectiveness of the work
Yield improvement using configurable analogue transistors (CATs)
Continued process scaling has led to significant yield and reliability challenges for todayâs designers. Analogue circuits are particularly susceptible to poor variation, driving the need for new yield resilient techniques in this area. This paper describes a new configurable analogue transistor structure and supporting methodology that facilitates variation compensation at the post-manufacture stage. The approach has demonstrated significant yield improvements and can be applied to any analogue circui
- âŠ