8 research outputs found

    Thermal Emittance and Lifetime of Alkali-Antimonide Photocathodes Grown On GaAs and Molybdenum Substrates Evaluated in a -300 kV dc Photogun

    Get PDF
    CsxKySb photocathodes grown on GaAs and molybdenum substrates were evaluated using a –300 kV dc high voltage photogun and diagnostic beam line. Photocathodes grown on GaAs substrates, with varying antimony layer thickness (estimated range from \u3c 20 nm to \u3e 1 um), yielded similar thermal emittance per rms laser spot size values (~0.4 mm mrad / mm) but very different operating lifetime. Similar thermal emittance was obtained for a photocathode grown on a molybdenum substrate but with markedly improved lifetime. For this photocathode, no decay in quantum efficiency was measured at 4.5 mA average current and with peak current 0.55 A at the photocathode

    Compact \u3cb\u3e-300 kV\u3c/b\u3e dc Inverted Insulator Photogun With Biased Anode and Alkali-Antimonide Photocathode

    Get PDF
    This contribution describes the latest milestones of a multiyear program to build and operate a compact −300  kV dc high voltage photogun with inverted insulator geometry and alkali-antimonide photocathodes. Photocathode thermal emittance measurements and quantum efficiency charge lifetime measurements at average current up to 4.5 mA are presented, as well as an innovative implementation of ion generation and tracking simulations to explain the benefits of a biased anode to repel beam line ions from the anode-cathode gap, to dramatically improve the operating lifetime of the photogun and eliminate the occurrence of micro-arc discharges

    Micro Total Analysis Systems for Cell Biology and Biochemical Assays

    No full text
    corecore