8 research outputs found

    ENERGY-BASED SEISMIC DESIGN: NEEDS OF ENERGY DAMAGE INDEX VALUES FOR SERVICEABILITY AND ULTIMATE LIMIT STATES FOR GRAVITY DESIGN BUILDINGS?

    Get PDF
    International audienceDuring the past earthquakes, different low ductile failure modes are observed in the gravity design structures and thus, the most of existing damage indices may fail to assess the damage of gravity design structures accurately in referring to the two main performance levels: immediate occupancy and ultimate limit state. Therefore, this study investigates the energy dissipated by the brittle structures and the possible damage indices based on energy for the damage assessment of gravity design frames. In the framework of an Energy-Based Seismic Design Approach, we need the assessment of the Demand and on the Capacity, both expressed in Energy. A methodology for the assessment of the seismic energy demands imposed on structures is already proposed, but not such methodology that makes consensus is proposed for the calculation of the Energy dissipation Capacity avoiding the Hysteretic models. The estimation of the energy expended by the building during an earthquake excitation is a tricky issue. For this purpose, this study considers the wavelet based energy estimation and compares it with different approaches for measuring the damages of a structure: the dominant inelastic period of a building and the more classical measure, the inter-story drift. IDA analysis are performed in energy, drift and inelastic period. Furthermore, the damage assessment results based on the expended energy for three gravity design buildings are compared and discussed relatively to the results expressed in inelastic period and drift. Finally, this study concludes that no significant effects of number of inelastic cycles to the damage assessment results for low ductile structures. However, this study also highlights the effects of number of inelastic cycles to the damage for medium and high ductile structures

    Simulation of Bedrock Motion to Obtain PGA Values

    Get PDF
    This study is focused on producing the Peak Ground Acceleration (PGA) values for important cities in Sri Lanka, which would provide the base to develop the national annex to the Euro Code, the current guideline in designing structures. In order to find out the magnitude and the epicenter distance of a 475-year return period earthquake, an earthquake catalog was developed. To simulate the bedrock motion FLAC Software, which uses the Finite Difference approach, was used. Five 2-D FLAC models representing five cross sections of Sri Lanka were developed. Due to the lack of local data records, a dataset of seven earthquakes with the magnitude of a 475- year return period was selected from the Pacific Earthquake Engineering Research Center (PEER) database. The model was then analyzed—one cross section for each of the seven earthquakes. The resultant acceleration time histories were converted into a response spectrum, and the average spectrum for each city was obtained

    Engineering surveys of Sri Lankan schools exposed to tsunami

    Get PDF
    The 2004 Indian Ocean tsunami affected 5% of Sri Lanka’s schools, severely damaging 108 and destroying 74. The catastrophe highlighted the critical role of schools in providing educational continuity during community recovery. Sri Lanka has since rehabilitated and rebuilt most of the destroyed schools along the coastline. However, there is a limited understanding of current levels of school exposure to tsunami. This hampers preparedness and risk reduction interventions that can improve community and educational tsunami resilience. This paper presents a multi-disciplinary school exposure database relevant to both vulnerability and loss modelling. The repository includes data on 38 schools and 86 classroom buildings, surveyed across the coastal districts of Ampara, Batticaloa and Galle in Sri Lanka, which were heavily affected by the 2004 tsunami. A new engineering rapid visual survey tool is presented that was used to conduct the physical assessment of schools for the exposure repository. School damage mechanisms observed in past tsunami inform the survey forms, which are designed to capture information at both school compound and building levels. The tsunami engineering survey tools are universally applicable for the visual assessment of schools exposed to tsunami. The surveys show that most Sri Lankan school buildings can be classified into three building archetypes. This means that future risk assessments can be conducted considering a small number of index buildings that are based on these archetypes with differing partition arrangements and structural health conditions. The surveys also raise three significant concerns. Firstly, most schools affected by the 2004 tsunami remain in the same exposed locations without any consideration for tsunami design or strengthening provisions. Secondly, Sri Lankan schools are fragile to tsunami loading and many of the schools in the Galle district suffer from severe corrosion, which will further affect their tsunami vulnerability. Thirdly, schools do not appear prepared for tsunami, and do not have adequate tsunami warnings nor evacuation protocols in place. These observations raise the urgent need to mitigate tsunami risk, including a holistic plan for tsunami retrofitting and for interventions to improve the tsunami preparedness of schools in Sri Lanka

    A Force-Based Fiber Beam-Column Element to Predict Moment-Axial-Shear Interaction of Reinforced Concrete Frames

    Full text link
    The nonlinear analysis of large complex reinforced concrete (RC) frame structures with shear-critical members requires numerical approaches that combine high accuracy and computational efficiency. At the same time, existing modeling approaches either involve detailed and costly discretization of the deformations in the frame members (displacement-based approaches), or compromise on accuracy by greatly simplifying (or even neglecting) shear effects. This paper presents a novel nonlinear force-based fiber beam-column element that addresses both these challenges. The element is capable of capturing the complex moment-axial-shear interaction response of planar RC frames and walls, while at the same time requiring minimum discretization. The proposed formulation consists of two nested iterative procedures at the structure and sectional levels. The introduction of the sectional level procedure explicitly satisfies sectional equilibrium, which is not achieved in either existing displacement or force-based line element formulations. As a result, a stable convergence of all average strain, local crack strain, and slip strain components of the constitutive relationship is ensured. The efficiency and accuracy of the proposed element formulation is illustrated with the help of beam and frame tests from the literature

    Influence of exterior infill walls on the performance of RC frames under tsunami loads: Case study of school buildings in Sri Lanka

    Get PDF
    This paper assesses the structural performance of RC frame buildings subjected to tsunami-induced loads, accounting for the influence of exterior masonry infill walls on the overall structural performance. Both the in-plane and out-of-plane contributions of masonry infill walls are considered in the analysis. To illustrate the importance of accounting for exterior infill walls in the response of structures to tsunami, two case study buildings are considered and modelled in 3D. The first case study is a typical two-storey school building in Sri Lanka, and the second is a modified version of this design configuration proposed in Sri Lanka after the 2004 Indian Ocean Tsunami to provide more redundancy against scour. Through these case studies, the effect of the non-uniform distribution of infill walls in the building and their failure (or “breakaway”) on building performance is considered. The building performance is characterized by a number of response parameters (i.e., first yielding, development of two hinges, and shear failure in ground floor columns). The paper shows that the in-plane behaviour of exterior infill walls increases the flexural capacity and lateral stiffness of the structure, as would be expected. However, it also shows that an assumption of non-breakaway infill walls consistently leads to premature structural failure mechanisms, associated with the concentration of drag forces on seaward columns only. The results demonstrate that a good estimation of the location and occurrence of shear failure in structural elements can only be achieved by explicitly considering the out-of-plane behaviour and failure of exterior infill walls during an incremental tsunami load analysis. Finally, the Froude number assumed for the analysis is seen to strongly affect the performance of both structural and non-structural components, highlighting the importance of choosing realistic tsunami properties to perform a reliable capacity assessment
    corecore