3 research outputs found

    Correction: Detecting antimicrobial resistance in Escherichia coli using benchtop attenuated total reflectance-Fourier transform infrared spectroscopy and machine learning.

    Full text link
    Correction for 'Detecting antimicrobial resistance in Escherichia coli using benchtop attenuated total reflectance-Fourier transform infrared spectroscopy and machine learning' by Hewa G. S. Wijesinghe et al., Analyst, 2021, DOI: 10.1039/d1an00546d

    A novel, molybdenum-containing methionine sulfoxide reductase supports survival of Haemophilus influenzae in an in vivo model of infection

    Full text link
    © 2016 Dhouib, Othman, Lin, Lai, Wijesinghe, Essilfie, Davis, Nasreen, Bernhardt, Hansbro, McEwan and Kappler. Haemophilus influenzae is a host adapted human mucosal pathogen involved in a variety of acute and chronic respiratory tract infections, including chronic obstructive pulmonary disease and asthma, all of which rely on its ability to efficiently establish continuing interactions with the host. Here we report the characterization of a novel molybdenum enzyme, TorZ/MtsZ that supports interactions of H. influenzae with host cells during growth in oxygen-limited environments. Strains lacking TorZ/MtsZ showed a reduced ability to survive in contact with epithelial cells as shown by immunofluorescence microscopy and adherence/invasion assays. This included a reduction in the ability of the strain to invade human epithelial cells, a trait that could be linked to the persistence of H. influenzae. The observation that in a murine model of H. influenzae infection, strains lacking TorZ/MtsZ were almost undetectable after 72 h of infection, while ~3.6 × 103 CFU/mL of the wild type strain were measured under the same conditions is consistent with this view. To understand how TorZ/MtsZ mediates this effect we purified and characterized the enzyme, and were able to show that it is an S- and N-oxide reductase with a stereospecificity for S-sulfoxides. The enzyme converts two physiologically relevant sulfoxides, biotin sulfoxide and methionine sulfoxide (MetSO), with the kinetic parameters suggesting that MetSO is the natural substrate of this enzyme. TorZ/MtsZ was unable to repair sulfoxides in oxidized Calmodulin, suggesting that a role in cell metabolism/energy generation and not protein repair is the key function of this enzyme. Phylogenetic analyses showed that H. influenzae TorZ/MtsZ is only distantly related to the Escherichia coli TorZ TMAO reductase, but instead is a representative of a new, previously uncharacterized clade of molybdenum enzyme that is widely distributed within the Pasteurellaceae family of pathogenic bacteria. It is likely that MtsZ/TorZ has a similar role in supporting host/pathogen interactions in other members of the Pasteurellaceae, which includes both human and animal pathogens

    Detecting antimicrobial resistance in Escherichia coli using benchtop attenuated total reflectance-Fourier transform infrared spectroscopy and machine learning.

    Full text link
    The widespread dissemination of resistance to third-generation cephalosporins in the Enterobacterales through the production of extended-spectrum β-lactamase (ESBL) is considered a critical global crisis requiring urgent attention of clinicians and scientists alike. Rapid diagnostic methods that can identify microbial resistance profiles closer to the point of care are crucial to minimize the overuse of antimicrobial agents and improve patient outcomes. Although Fourier transform infrared (FTIR) microscopy has shown promise in distinguishing between bacterial species, the high cost and technical requirements of the IR microscope may limit broad clinical use. To address the practical needs of a clinical microbiology laboratory, here, we examine the ability of a lower cost portable benchtop attenuated total reflectance (ATR)-FTIR spectrometer to achieve antimicrobial resistance detection, using a simple, clinically aligned sampling protocol. The technical reproducibility was confirmed through multi-day analysis of an Escherichia coli type strain, which serves as quality control. We generated a dataset of 100 E. coli clinical bloodstream isolates with 63 ceftriaxone resistant blaCTX-M ESBL gene variant strains and developed a classifier for blaCTX-M genotype detection. After assessing 35 machine learning methods using the training set (n = 71), four methods were further optimised, and the best performing method was evaluated using the held-out testing set (n = 29). A tuned support vector machine model with a polynomial kernel, using the 700-1500 cm-1 range achieved a sensitivity of 89.2%, and specificity of 66.7% for detecting blaCTX-M in independent testing, approaching the reported performance of FTIR microscopy. With further algorithm improvement, these data suggest the potential deployment of a portable FTIR spectrometer as a rapid antimicrobial susceptibility prediction platform to enable the efficient use of antimicrobials
    corecore