215 research outputs found
Combining Health and Well-being: Designing a Modern Medicinal Garden to Meet Tourists' Expectations
The tourism sector, a fast-growing, competitive, and diversified industry is a significant contributor to the global economy. Modern-day tourism embraces characteristics associated with history, nature, and leisure, thereby linking them with new destinations in a continual expansion. The main objective of this study was to develop a perception-based conceptual model for a sustainable medicinal garden (MG) that could benefit the tourism industry while supporting biodiversity conservation. The proposed MG aims to fulfill six intentions, such as, relaxing the mind from a busy day while treating illnesses and improving mental healthiness; incorporating leisure activities that are closely related to medical treatments; disseminating knowledge on Sri Lankan traditional medicine; promoting sustainable eco- friendly practices; increasing economic benefits for the country; and improving the community livelihood of the people in the region. The research focused on developing an MG using the perception intended for 144 local and foreign participants representing four tourist hubs (Galle, Kandy, Dambulla, and Udawalawe) in Sri Lanka. The study examined the expectations of MGs and their preference for the experience. The questionnaire was used to evaluate the visitors' perceptions of the proposed 40 components for the proposed MG, which enabled their ranking based on preferences. The mean preference value for the MG experience was recorded as 72.1%. 97.0% of tourists who participated in the survey preferred to experience the MG, exceeding the 50% acceptance level for all 40 components. Therefore, all 40 components were applied to the MG. However, 18 components exceeded the 75% acceptance level; therefore, they could be incorporated into the MG without changes. The other 22 were considered the accepted components with some minor modifications. Considering the selected region (Dambulla) and the architectural view, 124 medicinal plants were accepted for application to the MG, including terrestrial, water, fruit, and poisonous plants. The model MG consists of 3545 medicinal plants. Creating an MG with the concepts of traditional, cultural, sustainable, and eco-friendly was a different angle to addressing the Sri Lankan tourism sector. This research presents an overturned vision that considers tourism demand on novel concepts of traditional herbal tourism. A model MG was developed with modern architectural and environmental knowledge. Within a five-acre arbitrary land, three-dimensional structures were designed around the proposed model MG. The actual structure of the MG was visualized with a virtual walk-through using architectural software (i.e., AutoCAD 19.0, Sketch-Up Pro 2015, and Lumion 5.0). This model can promote minimal environmental impact through the processes, conserve the environment and gain economic benefits from all these eco-services to the tourism sector and Sri Lankan economy to the advantage of the community or country.
Keywords: Eco-tourism, Architectural software, Medicinal plants, Traditional medicine, Sri Lankan econom
Biosolids application and soil organic carbon dynamics: a meta-analysis.
Soil carbon sequestration has been recognized as a potential “direct action” tool in mitigating climate change. Organic matter rich biosolids from wastewater industry has been applied to soils as one of the strategies to the carbon sequestration. However, most of the short- and long-term studies as influenced by land application of biosolids have been showed quite inconsistent results in carbon increments in soils. Therefore, soil carbon sequestration resulted by biosolids application is yet to be needed further studies to elucidate. This study presents a comprehensive MetaAnalysis (MA) on soil carbon sequestration as influenced by biosolids application. Datasets comprised with 175 independent paired-treatments across 25 countries were fed in to Comprehensive Meta-Analysis (version 3) programme and modelled. The MA compared Soil Organic Carbon (SOC as g/kg) changes as the functions of time after biosolids application and its rate over twelve groups under two categories: application age (time after application) as 11 year, and cumulative application rate as 251 tonnes/ha.The fixed model is applied to explicate overall effects of analysed data derived from the MA. The MA showed overall positive influences on soil carbon sequestration towards increasing SOC. For example, the highest effect on SOC was observed at 1-3 age group suggesting the need of short term biosolids application to develop carbon storage in soils. Overall, this study shows that land application of biosolids can be used to increase soil carbon storage and therefore has the potential to be a strategy for mitigating climate change towards carbon sequestration in soils
The association of circulating amylin with β-amyloid in familial Alzheimer's disease.
INTRODUCTION: This study assessed the hypothesis that circulating human amylin (amyloid-forming) cross-seeds with amyloid beta (Aβ) in early Alzheimer's disease (AD). METHODS: Evidence of amylin-AD pathology interaction was tested in brains of 31 familial AD mutation carriers and 20 cognitively unaffected individuals, in cerebrospinal fluid (CSF) (98 diseased and 117 control samples) and in genetic databases. For functional testing, we genetically manipulated amylin secretion in APP/PS1 and non-APP/PS1 rats. RESULTS: Amylin-Aβ cross-seeding was identified in AD brains. High CSF amylin levels were associated with decreased CSF Aβ42 concentrations. AD risk and amylin gene are not correlated. Suppressed amylin secretion protected APP/PS1 rats against AD-associated effects. In contrast, hypersecretion or intravenous injection of human amylin in APP/PS1 rats exacerbated AD-like pathology through disruption of CSF-brain Aβ exchange and amylin-Aβ cross-seeding. DISCUSSION: These findings strengthened the hypothesis of circulating amylin-AD interaction and suggest that modulation of blood amylin levels may alter Aβ-related pathology/symptoms
Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments:A review
The term “Total petroleum hydrocarbons” (TPH) is used to describe a complex mixture of petroleum-based hydrocarbons primarily derived from crude oil. Those compounds are considered as persistent organic pollutants in the terrestrial environment. A wide array of organic amendments is increasingly used for the remediation of TPH-contaminated soils. Organic amendments not only supply a source of carbon and nutrients but also add exogenous beneficial microorganisms to enhance the TPH degradation rate, thereby improving the soil health. Two fundamental approaches can be contemplated within the context of remediation of TPH-contaminated soils using organic amendments: (i) enhanced TPH sorption to the exogenous organic matter (immobilization) as it reduces the bioavailability of the contaminants, and (ii) increasing the solubility of the contaminants by supplying desorbing agents (mobilization) for enhancing the subsequent biodegradation. Net immobilization and mobilization of TPH have both been observed following the application of organic amendments to contaminated soils. This review examines the mechanisms for the enhanced remediation of TPH-contaminated soils by organic amendments and discusses the influencing factors in relation to sequestration, bioavailability, and subsequent biodegradation of TPH in soils. The uncertainty of mechanisms for various organic amendments in TPH remediation processes remains a critical area of future research. © 2021 Elsevier B.V
Remediation of poly- and perfluoroalkyl substances (PFAS) contaminated soils – To mobilize or to immobilize or to degrade?
Poly- and perfluoroalkyl substances (PFASs) are synthetic chemicals, which are introduced to the environment through anthropogenic activities. Aqueous film forming foam used in firefighting, wastewater effluent, landfill leachate, and biosolids are major sources of PFAS input to soil and groundwater. Remediation of PFAS contaminated solid and aqueous media is challenging, which is attributed to the chemical and thermal stability of PFAS and the complexity of PFAS mixtures. In this review, remediation of PFAS contaminated soils through manipulation of their bioavailability and destruction is presented. While the mobilizing amendments (e.g., surfactants) enhance the mobility and bioavailability of PFAS, the immobilizing amendments (e.g., activated carbon) decrease their bioavailability and mobility. Mobilizing amendments can be applied to facilitate the removal of PFAS though soil washing, phytoremediation, and complete destruction through thermal and chemical redox reactions. Immobilizing amendments are likely to reduce the transfer of PFAS to food chain through plant and biota (e.g., earthworm) uptake, and leaching to potable water sources. Future studies should focus on quantifying the potential leaching of the mobilized PFAS in the absence of removal by plant and biota uptake or soil washing, and regular monitoring of the long-term stability of the immobilized PFAS. © 2020 Elsevier B.V
Reduced Serotonin Reuptake Transporter (SERT) Function Causes Insulin Resistance and Hepatic Steatosis Independent of Food Intake
Serotonin reuptake transporter (SERT) is a key regulator of serotonin neurotransmission and a major target of antidepressants. Antidepressants, such as selectively serotonin reuptake inhibitors (SSRIs), that block SERT function are known to affect food intake and body weight. Here, we provide genetic evidence that food intake and metabolism are regulated by separable mechanisms of SERT function. SERT-deficient mice ate less during both normal diet and high fat diet feeding. The reduced food intake was accompanied with markedly elevated plasma leptin levels. Despite reduced food intake, SERT-deficient mice exhibited glucose intolerance and insulin resistance, and progressively developed obesity and hepatic steatosis. Several lines of evidence indicate that the metabolic deficits of SERT-deficient mice are attributable to reduced insulin-sensitivity in peripheral tissues. First, SERT-deficient mice exhibited beta-cell hyperplasia and islet-mass expansion. Second, biochemical analyses revealed constitutively elevated JNK activity and diminished insulin-induced AKT activation in the liver of SERT-deficient mice. SERT-deficient mice exhibited hyper-JNK activity and hyperinsulinemia prior to the development of obesity. Third, enhancing AKT signaling by PTEN deficiency corrected glucose tolerance in SERT-deficient mice. These findings have potential implications for designing selective SERT drugs for weight control and the treatment of metabolic syndromes
Pten (phosphatase and tensin homologue gene) haploinsufficiency promotes insulin hypersensitivity
AIMS/HYPOTHESIS: Insulin controls glucose metabolism via multiple signalling pathways, including the phosphatidylinositol 3-kinase (PI3K) pathway in muscle and adipose tissue. The protein/lipid phosphatase Pten (phosphatase and tensin homologue deleted on chromosome 10) attenuates PI3K signalling by dephosphorylating the phosphatidylinositol 3,4,5-trisphosphate generated by PI3K. The current study was aimed at investigating the effect of haploinsufficiency for Pten on insulin-stimulated glucose uptake. MATERIALS AND METHODS: Insulin sensitivity in Pten heterozygous (Pten(+/−)) mice was investigated in i.p. insulin challenge and glucose tolerance tests. Glucose uptake was monitored in vitro in primary cultures of myocytes from Pten(+/−) mice, and in vivo by positron emission tomography. The phosphorylation status of protein kinase B (PKB/Akt), a downstream signalling protein in the PI3K pathway, and glycogen synthase kinase 3β (GSK3β), a substrate of PKB/Akt, was determined by western immunoblotting. RESULTS: Following i.p. insulin challenge, blood glucose levels in Pten(+/−) mice remained depressed for up to 120 min, whereas glucose levels in wild-type mice began to recover after approximately 30 min. After glucose challenge, blood glucose returned to normal about twice as rapidly in Pten(+/−) mice. Enhanced glucose uptake was observed both in Pten(+/−) myocytes and in skeletal muscle of Pten(+/−) mice by PET. PKB and GSK3β phosphorylation was enhanced and prolonged in Pten(+/−) myocytes. CONCLUSIONS/INTERPRETATION: Pten is a key negative regulator of insulin-stimulated glucose uptake in vitro and in vivo. The partial reduction of Pten due to Pten haploinsufficiency is enough to elicit enhanced insulin sensitivity and glucose tolerance in Pten(+/−) mice
- …