1,094 research outputs found
On the formation of low-mass black holes in massive binary stars
Recently (Brown \& Bethe 1994) it was suggested that most stars with main
sequence mass in the range of about explode, returning
matter to the Galaxy, and then go into low-mass () black
holes. Even more massive main-sequence stars would, presumably, chiefly g o
into high-mass () black holes. The Brown-Bethe estimates
gave approximately low-mass black holes in the Galaxy. A
pressing question, which we attempt to answer here, is why, with the possible
exception of the compact objects in SN1987A and 4U\,1700--37, none of these
have been seen.
We address this question in three parts. Firstly, black holes are generally
``seen'' only in binaries, by the accretion of matter from a companion star.
High mass black holes are capable of accreting more matter than low-mass black
holes, so there is a selection effect favoring them. This, in itself, would not
be sufficient to show why low-mass black holes have not been seen, since
neutron stars (of nearly the same mass) are seen in abundance.
Secondly, and this is our main point, the primary star in a binary ---the
first star to evolve--- loses its hydrogen envelope by transfer of matter to
the secondary and loss into space, and the resulting ``naked'' helium star
evolves differently than a helium core, which is at least initially covered by
the hydrogen envelope in a massive main-sequence star. We show that primary
stars in binaries can end up as neutron stars even if their initial mass
substantially exceeds the mass limit for neutron star formation from single
stars (). An example is 4U\,1223--62, in which we suggest
that the initial primary mass exceeded , yet X-ray pulsationsComment: uuencoded compressed postscript. The preprint is also available at
http://www.ast.cam.ac.uk/preprint/PrePrint.htm
Relativistic Winds from Compact Gamma-Ray Sources: II. Pair Loading and Radiative Acceleration in Gamma-ray Bursts
We consider the effects of rapid pair creation by an intense pulse of
gamma-rays propagating ahead of a relativistic shock. Side-scattered photons
colliding with the main gamma-ray beam amplify the density of scattering
charges. The acceleration rate of the pair-loaded medium is calculated, and its
limiting bulk Lorentz factor related to the spectrum and compactness of the
photon source. One obtains, as a result, a definite prediction for the relative
inertia in baryons and pairs. The deceleration of a relativistic shock in the
moving medium, and the resulting synchrotron emissivity, are compared with
existing calculations for a static medium. The radiative efficiency is
increased dramatically by pair loading. When the initial ambient density
exceeds a critical value, the scattering depth traversed by the main gamma-ray
pulse rises above unity, and the pulse is broadened. These considerations place
significant constraints on burst progenitors: a pre-burst mass loss rate
exceeding 10^{-5} M_\odot per year is difficult to reconcile with individual
pulses narrower than 10 s, unless the radiative efficiency is low. An
anisotropic gamma-ray flux (on an angular scale \Gamma^{-1} or larger) drives a
large velocity shear that greatly increases the energy in the seed magnetic
field forward of the propagating shock.Comment: 19 pp., LaTeX (aaspp4.sty), revised 12/23/99, Ap. J. in press;
summary section added and several minor improvements in presentatio
Gamma-Ray Burst and Relativistic Shells: The Surface Filling Factor
The variability observed in many complex gamma-ray bursts (GRBs) is
inconsistent with causally connected variations in a single, symmetric,
relativistic shell interacting with the ambient material ("external shocks").
Rather, the symmetry of the shell must be broken on an angular scale much
smaller than Gamma^{-1} where Gamma is the bulk Lorentz factor for the shell.
The observed variability in the external shock models arises from the number of
causally connected regions that (randomly) become active. We define the
"surface filling factor" to be the ratio of the area of causally connected
regions that become active to the observable area of the shell. From the
observed variability in 52 BATSE bursts, we estimate the surface filling factor
to be typically 0.005 although some values are near unity. We find that the
surface filling factor is about 0.1 Delta T/T in both the constant Gamma phase
(which probably produces the GRB) and the deaccelerating phase (which probably
produces the x-ray afterglows). Here, \Delta T is a typical time scale of
variability and T is the time since the initial signal. We analyze the 2 hr
flare seen by ASCA 36 hr after the GRB and conclude that the surface filling
factor must be small (0.001) in the x-ray afterglow phase as well. Explanations
for low surface filling factor can either require more or less energy (by a
factor of about 1000) compared to that expected for a symmetric shell.Comment: 26 pages, 5 embedded figures, Latex, revised version as in press,
ApJ, added figure to show the possible expanding shell geometries that can
give low filling facto
A Theory of Gamma-Ray Bursts
We present a specific scenario for the link between GRB and hypernovae, based
on Blandford-Znajek extraction of black-hole spin energy. Such a mechanism
requires a high angular momentum in the progenitor object. The observed
association of gamma-ray bursts with type Ibc supernovae leads us to consider
massive helium stars that form black holes at the end of their lives as
progenitors. We combine the numerical work of MacFadyen & Woosley with analytic
calculations, to show that about 1E53 erg each are available to drive the fast
GRB ejecta and the supernova. The GRB ejecta are driven by the power output
through the open field lines, whereas the supernova is powered by closed filed
lines and jet shocks. We also present a much simplified approximate derivation
of these energetics.
Helium stars that leave massive black-hole remnants in special ways, namely
via soft X-ray transients or very massive WNL stars. Since binaries naturally
have high angular momentum, we propose a link between black-hole transients and
gamma-ray bursts. Recent observations of one such transient, GRO J1655-40/Nova
Scorpii 1994, explicitly support this connection: its high space velocity
indicates that substantial mass was ejected in the formation of the black hole,
and the overabundance of alpha-nuclei, especially sulphur, indicates that the
explosion energy was extreme, as in SN 1998bw/GRB 980425. (abstract shortened)Comment: 32 pages, 8 figures, accepted for publication in New Astronom
Discrete structure of ultrathin dielectric films and their surface optical properties
The boundary problem of linear classical optics about the interaction of
electromagnetic radiation with a thin dielectric film has been solved under
explicit consideration of its discrete structure. The main attention has been
paid to the investigation of the near-zone optical response of dielectrics. The
laws of reflection and refraction for discrete structures in the case of a
regular atomic distribution are studied and the structure of evanescent
harmonics induced by an external plane wave near the surface is investigated in
details. It is shown by means of analytical and numerical calculations that due
to the existence of the evanescent harmonics the laws of reflection and
refraction at the distances from the surface less than two interatomic
distances are principally different from the Fresnel laws. From the practical
point of view the results of this work might be useful for the near-field
optical microscopy of ultrahigh resolution.Comment: 25 pages, 16 figures, LaTeX2.09, to be published in Phys.Rev.
GRB 030329: 3 years of radio afterglow monitoring
Radio observations of gamma-ray burst (GRB) afterglows are essential for our
understanding of the physics of relativistic blast waves, as they enable us to
follow the evolution of GRB explosions much longer than the afterglows in any
other wave band. We have performed a three-year monitoring campaign of GRB
030329 with the Westerbork Synthesis Radio Telescopes (WSRT) and the Giant
Metrewave Radio Telescope (GMRT). Our observations, combined with observations
at other wavelengths, have allowed us to determine the GRB blast wave physical
parameters, such as the total burst energy and the ambient medium density, as
well as investigate the jet nature of the relativistic outflow. Further, by
modeling the late-time radio light curve of GRB 030329, we predict that the
Low-Frequency Array (LOFAR, 30-240 MHz) will be able to observe afterglows of
similar GRBs, and constrain the physics of the blast wave during its
non-relativistic phase.Comment: 5 pages, 2 figures, Phil. Trans. R. Soc. A, vol.365, p.1241,
proceedings of the Royal Society Scientific Discussion Meeting, London,
September 200
A Compton Up-scattering Model for Soft Lags in the Lower Kilohertz QPO in 4U1608-52
An empirical Compton up-scattering model is described which reproduces both
the fractional amplitude (RMS) vs. energy and the soft time lags in the 830 Hz
QPO observed in 4U1608-52 on Mar. 3, 1996. A combination of two coherent
variations in the coronal and soft photon temperatures (with their relative
contributions determined by enforcing energy conservation) gives rise to the
QPO's energy dependent characteristics. All input parameters to the model, save
a characteristic plasma size and the fraction of Comptonized photons impinging
on the soft photon source, are derived from the time-averaged photon energy
spectrum of the same observation. Fits to the fractional RMS and phase lag data
for this kilohertz QPO imply that the spatial extent of the plasma is in the
range from 4 to 15 km.Comment: 4 pages, 2 figure
The 1.4 GHz light curve of GRB 970508
We report on Westerbork 1.4 GHz radio observations of the radio counterpart
to -ray burst GRB~970508, between 0.80 and 138 days after this event.
The 1.4 GHz light curve shows a transition from optically thick to thin
emission between 39 and 54 days after the event. We derive the slope of the
spectrum of injected electrons () in two
independent ways which yield values very close to . This is in agreement
with a relativistic dynamically near-adiabatic blast wave model whose emission
is dominated by synchrotron radiation and in which a significant fraction of
the electrons cool fast.Comment: Paper I. Accepted for publication in the Astrophysical Journal
Letter
- …