25 research outputs found

    Mitral Valve Coaptation Reserve Index:A Model to Localize Individual Resistance to Mitral Regurgitation Caused by Annular Dilation

    Get PDF
    Objectives: The objective of this study was to develop a mathematical model for mitral annular dilatation simulation and determine its effects on the individualized mitral valve (MV) coaptation reserve index (CRI). Design: A retrospective analysis of intraoperative transesophageal 3-dimensionalechocardiographic MV datasets was performed. A mathematical model was created to assess the mitral CRI for each leaflet segment (A1-P1, A2-P2, A3-P3). Mitral CRI was defined as the ratio between the coaptation reserve (measured coaptation length along the closure line) and an individualized correction factor. Indexing was chosen to correct for MV sphericity and area of largest valve opening. Mathematical models were created to simulate progressive mitral annular dilatation and to predict the effect on the individual mitral CRI. Setting: At a single-center academic hospital. Participants: Twenty-five patients with normally functioning MVs undergoing cardiac surgery. Interventions: None. Measurements and Main Results: Direct measurement of leaflet coaptation along the closure line showed the lowest amount of coaptation (reserve) near the commissures (A1-P1 0.21 ± 0.05 cm and A3-P3 0.22 ± 0.06 cm), and the highest amount of coaptation (reserve) at region A2 to P2 0.25 ± 0.06 cm. After indexing, the A2-to-P2 region was the area with the lowest CRI in the majority of patients, and also the area with the least resistance to mitral regurgitation (MR) occurrence after simulation of progressive annular dilation. Conclusions: Quantification and indexing of mitral coaptation reserve along the closure line are feasible. Indexing and mathematical simulation of progressive annular dilatation consistently showed that indexed coaptation reserve was lowest in the A2-to-P2 region. These results may explain why this area is prone to lose coaptation and is often affected in MR

    Left atrial geometry in an ovine ischemic mitral regurgitation model:implications for transcatheter mitral valve replacement devices with a left atrial anchoring mechanism

    Get PDF
    Abstract Background Transcatheter mitral valve replacement (TMVR) is a challenging, but promising minimally invasive treatment option for patients with mitral valve disease. Depending on the anchoring mechanism, complications such as mitral leaflet or chordal disruption, aortic valve disruption or left ventricular outflow tract obstruction may occur. Supra-annular devices only anchor at the left atrial (LA) level with a low risk of these complications. For development of transcatheter valves based on LA anchoring, animal feasibility studies are required. In this study we sought to describe LA systolic and diastolic geometry in an ovine ischemic mitral regurgitation (IMR) model using magnetic resonance imaging (MRI) and echocardiography in order to facilitate future research focusing on TMVR device development for (I)MR with LA anchoring mechanisms. Methods A group of 10 adult male Dorsett sheep underwent a left lateral thoracotomy. Posterolateral myocardial infarction was created by ligation of the left circumflex coronary artery, the obtuse marginal and diagonal branches. MRI and echocardiography were performed at baseline and 8 weeks after myocardial infarction (MI). Results Six animals survived to 8 weeks follow-up. All animals had grade 2 + or higher IMR 8 weeks post-MI. All LA geometric parameters did not change significantly 8 weeks post-MI compared to baseline. Diastolic and systolic interpapillary muscle distance increased significantly 8 weeks post-MI. Conclusions Systolic and diastolic LA geometry do not change significantly in the presence of grade 2 + or higher IMR 8 weeks post-MI. These findings help facilitate future tailored TMVR device development with LA anchoring mechanisms

    Mitral valve repair and redo repair for mitral regurgitation in a heart transplant recipient

    Get PDF
    A 37-year-old man with end-stage idiopathic dilated cardiomyopathy underwent an orthotopic heart transplant followed by a reoperation with mitral annuloplasty for severe mitral regurgitation. Shortly thereafter, he developed severe tricuspid regurgitation and severe recurrent mitral regurgitation due to annuloplasty ring dehiscence. The dehisced annuloplasty ring was refixated, followed by tricuspid annuloplasty through a right anterolateral thoracotomy. After four years of follow-up, there are no signs of recurrent mitral or tricupid regurgitation and the patient remains in NYHA class II. Pushing the envelope on conventional surgical procedures in marginal donor hearts (both before and after transplantation) may not only improve the patient’s functional status and reduce the need for retransplantation, but it may ultimately alleviate the chronic shortage of donor hearts

    Long-term survival after mitral valve surgery for post-myocardial infarction papillary muscle rupture

    Get PDF
    Background: Papillary muscle rupture (PMR) is a rare, but dramatic mechanical complication of myocardial infarction (MI), which can lead to rapid clinical deterioration and death. Immediate surgical intervention is considered the optimal and most rational treatment, despite high risks. In this study we sought to identify overall long-term survival and its predictors for patients who underwent mitral valve surgery for post-MI PMR. Methods: Fifty consecutive patients (mean age 64.7 +/- 10.8 years) underwent mitral valve repair (n = 10) or replacement (n = 40) for post-MI PMR from January 1990 through May 2014. Clinical data, echocardiographic data, catheterization data, and surgical data were stored in a dedicated database. Follow-up was obtained in June of 2014; mean follow-up was 7.1 +/- 6.8 years (range 0.0-22.2 years). Univariate and multivariate Cox proportional hazard regression analyses were performed to identify predictors of long-term survival. Kaplan-Meier curves were compared with the log-rank test. Results: Kaplan-Meier cumulative survival at 1, 5, 10, 15, and 20 years was 71.9 +/- 6.4%, 65.1 +/- 6.9%, 49.5 +/- 7.6%, 36.1 +/- 8.0% and 23.7 +/- 9.2%, respectively. Univariate and multivariate analyses revealed logistic EuroSCORE >= 40% and EuroSCORE II >= 25% as strong independent predictors of a lower overall long-term survival. After removal of the EuroSCOREs from the model, preoperative inotropic drug support and mitral valve replacement (MVR) without (partial or complete) preservation of the subvalvular apparatus were independent predictors of a lower overall long-term survival. Conclusions: Logistic EuroSCORE >= 40%, EuroSCORE II >= 25%, preoperative inotropic drug support and MVR without (partial or complete) preservation of the subvalvular apparatus are strong independent predictors of a lower overall long-term survival in patients undergoing mitral valve surgery for post-MI PMR. Whenever possible, the subvalvular apparatus should be preserved in these patients

    Genome-wide association study reveals novel genetic loci:a new polygenic risk score for mitral valve prolapse

    Get PDF
    AIMS: Mitral valve prolapse (MVP) is a common valvular heart disease with a prevalence of >2% in the general adult population. Despite this high incidence, there is a limited understanding of the molecular mechanism of this disease, and no medical therapy is available for this disease. We aimed to elucidate the genetic basis of MVP in order to better understand this complex disorder. METHODS AND RESULTS: We performed a meta-analysis of six genome-wide association studies that included 4884 cases and 434 649 controls. We identified 14 loci associated with MVP in our primary analysis and 2 additional loci associated with a subset of the samples that additionally underwent mitral valve surgery. Integration of epigenetic, transcriptional, and proteomic data identified candidate MVP genes including LMCD1, SPTBN1, LTBP2, TGFB2, NMB, and ALPK3. We created a polygenic risk score (PRS) for MVP and showed an improved MVP risk prediction beyond age, sex, and clinical risk factors. CONCLUSION: We identified 14 genetic loci that are associated with MVP. Multiple analyses identified candidate genes including two transforming growth factor-beta signalling molecules and spectrin beta. We present the first PRS for MVP that could eventually aid risk stratification of patients for MVP screening in a clinical setting. These findings advance our understanding of this common valvular heart disease and may reveal novel therapeutic targets for intervention. KEY QUESTION: Expand our understanding of the genetic basis for mitral valve prolapse (MVP). Uncover relevant pathways and target genes for MVP pathophysiology. Leverage genetic data for MVP risk prediction. KEY FINDING: Sixteen genetic loci were significantly associated with MVP, including 13 novel loci. Interesting target genes at these loci included LTBP2, TGFB2, ALKP3, BAG3, RBM20, and SPTBN1. A risk score including clinical factors and a polygenic risk score, performed best at predicting MVP, with an area under the receiver operating characteristics curve of 0.677. TAKE-HOME MESSAGE: Mitral valve prolapse has a polygenic basis: many genetic variants cumulatively influence pre-disposition for disease. Disease risk may be modulated via changes to transforming growth factor-beta signalling, the cytoskeleton, as well as cardiomyopathy pathways. Polygenic risk scores could enhance the MVP risk prediction

    Mitral valve surgery for mitral regurgitation caused by Libman-Sacks endocarditis: a report of four cases and a systematic review of the literature

    Get PDF
    Libman-Sacks endocarditis of the mitral valve was first described by Libman and Sacks in 1924. Currently, the sterile verrucous vegetative lesions seen in Libman-Sacks endocarditis are regarded as a cardiac manifestation of both systemic lupus erythematosus (SLE) and the antiphospholipid syndrome (APS). Although typically mild and asymptomatic, complications of Libman-Sacks endocarditis may include superimposed bacterial endocarditis, thromboembolic events, and severe valvular regurgitation and/or stenosis requiring surgery. In this study we report two cases of mitral valve repair and two cases of mitral valve replacement for mitral regurgitation (MR) caused by Libman-Sacks endocarditis. In addition, we provide a systematic review of the English literature on mitral valve surgery for MR caused by Libman-Sacks endocarditis. This report shows that mitral valve repair is feasible and effective in young patients with relatively stable SLE and/or APS and only localized mitral valve abnormalities caused by Libman-Sacks endocarditis. Both clinical and echocardiographic follow-up after repair show excellent mid- and long-term results

    Mitral Valve Repair in a Patient with an Anomalous Left Coronary Artery

    No full text
    Anomalous coronary arteries may course in close proximity to the mitral annulus, which increases the risk of iatrogenic occlusion due to annular suture placement. We report a mitral valve repair in a 55-year-old male with severe mitral regurgitation and an anomalous retro-aortic left coronary artery, originating from the right coronary sinus, coursing in close proximity to the anterior mitral annulus. To minimize iatrogenic occlusion risk an open annuloplasty ring was used with good long-term results
    corecore