200 research outputs found

    Synovial tissue response to rituximab: mechanism of action and identification of biomarkers of response

    Get PDF
    OBJECTIVE: To investigate the synovial tissue in patients with rheumatoid arthritis (RA) treated with rituximab and to identify possible predictors of clinical response. METHODS: A total of 24 patients with RA underwent synovial biopsy before, 4 and 16 weeks after initiation of rituximab treatment (without peri-infusional corticosteroids to prevent bias). Immunohistochemical analysis was performed and stained sections were analysed by digital image analysis. Linear regression analysis was used to identify predictors of clinical response. RESULTS: The 28-joint Disease Activity Score (DAS28) was unaltered at 4 weeks, but significantly reduced at 16 and 24 weeks. Serum levels of IgM-rheumatoid factor (RF) decreased significantly at 24 weeks and anti-citrullinated peptide antibody (ACPA) levels at 36 weeks. Peripheral blood B cells were depleted at 4 weeks and started to return at 24 weeks. Synovial B cells were significantly decreased at 4 weeks, but were not completely depleted in all patients; there was a further reduction at 16 weeks in some patients. We found a significant decrease in macrophages at 4 weeks, which was more pronounced at 16 weeks. At that timepoint, T cells were also significantly decreased. The reduction of plasma cells predicted clinical improvement at 24 weeks. CONCLUSIONS: The results support the view that B cells orchestrate local cellular infiltration. The kinetics of the serological as well as the tissue response in clinical responders are consistent with the notion that rituximab exerts its effects in part by an indirect effect on plasma cells associated with autoantibody production, which could help explain the delayed response after rituximab treatmen

    TWEAK and its receptor Fn14 in the synovium of patients with rheumatoid arthritis compared to psoriatic arthritis and its response to tumour necrosis factor blockade

    Get PDF
    Objective: To investigate the expression of tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor inducible 14 (Fn14) in the inflamed synovium of patients with arthritis, as TWEAK blockade has been observed to have a beneficial effect in an animal model of rheumatoid arthritis (RA). Methods: Synovial tissue (ST) biopsies were obtained from 6 early, methotrexate-naive patients with RA as well as 13 patients with RA and 16 patients with psoriatic arthritis (PsA) who were matched for treatment and disease duration. Serial ST samples were obtained from a separate cohort of 13 patients with RA before and after infliximab treatment. TWEAK and Fn14 expression was evaluated by immunohistochemistry and digital image analysis. Results: TWEAK and Fn14 were clearly expressed in ST of patients with RA and PsA. TWEAK expression was significantly higher in RA (sub) lining samples compared to PsA (p = 0.005 and p = 0.014, respectively), but Fn14 expression was comparable. Double immunofluorescence showed TWEAK and Fn14 expression on fibroblast-like synoviocytes and macrophages, but not T cells. Of interest, persistent TWEAK and Fn14 expression was found after anti-TNF therapy. Conclusions: TWEAK and Fn14 are abundantly expressed in the inflamed synovium of patients with RA and PsA. This raises the possibility that blocking TWEAK/Fn14 signalling could be of therapeutic benefit in inflammatory arthriti

    The Gene Expression Profile in the Synovium as a Predictor of the Clinical Response to Infliximab Treatment in Rheumatoid Arthritis

    Get PDF
    Background: Although the use of TNF inhibitors has fundamentally changed the way rheumatoid arthritis (RA) is treated, not all patients respond well. It is desirable to facilitate the identification of responding and non-responding patients prior to treatment, not only to avoid unnecessary treatment but also for financial reasons. In this work we have investigated the transcriptional profile of synovial tissue sampled from RA patients before anti-TNF treatment with the aim to identify biomarkers predictive of response. Methodology/Principal Findings: Synovial tissue samples were obtained by arthroscopy from 62 RA patients before the initiation of infliximab treatment. RNA was extracted and gene expression profiling was performed using an in-house spotted long oligonucleotide array covering 17972 unique genes. Tissue sections were also analyzed by immunohistochemistry to evaluate cell infiltrates. Response to infliximab treatment was assessed according to the EULAR response criteria. The presence of lymphocyte aggregates dominated the expression profiles and a significant overrepresentation of lymphocyte aggregates in good responding patients confounded the analyses. A statistical model was set up to control for the effect of aggregates, but no differences could be identified between responders and non-responders. Subsequently, the patients were split into lymphocyte aggregate positive-and negative patients. No statistically significant differences could be identified except for 38 transcripts associated with differences between good- and non-responders in aggregate positive patients. A profile was identified in these genes that indicated a higher level of metabolism in good responding patients, which indirectly can be connected to increased inflammation. Conclusions/Significance: It is pivotal to account for the presence of lymphoid aggregates when studying gene expression patterns in rheumatoid synovial tissue. In spite of our original hypothesis, the data do not support the notion that microarray analysis of whole synovial biopsy specimens can be used in the context of personalized medicine to identify non-responders to anti-TNF therapy before the initiation of treatmen
    • …
    corecore