26 research outputs found

    Genetically Encoded Whole Cell Biosensor for Drug Discovery of HIF-1 Interaction Inhibitors

    Get PDF
    The heterodimeric transcription factor, hypoxia inducible factor-1 (HIF-1), is an important anticancer target as it supports the adaptation and response of tumors to hypoxia. Here, we optimized the repressed transactivator yeast two-hybrid system to further develop it as part of a versatile yeast-based drug discovery platform and validated it using HIF-1. We demonstrate both fluorescence-based and auxotrophy-based selections that could detect HIF-1Ξ±/HIF-1Ξ² dimerization inhibition. The engineered genetic selection is tunable and able to differentiate between strong and weak interactions, shows a large dynamic range, and is stable over different growth phases. Furthermore, we engineered mechanisms to control for cellular activity and off-target drug effects. We thoroughly characterized all parts of the biosensor system and argue this tool will be generally applicable to a wide array of protein-protein interaction targets. We anticipate this biosensor will be useful as part of a drug discovery platform, particularly when screening DNA-encoded new modality drugs

    Non-peptidic antagonists of the CGRP receptor, BIBN4096BS and MK-0974, interact with the calcitonin receptor-like receptor via methionine-42 and RAMP1 via tryptophan-74

    Get PDF
    The receptor for calcitonin gene-related peptide (CGRP) has been the target for the development of novel small molecule antagonists for the treatment of migraine. Two such antagonists, BIBN4096BS and MK-0974, have shown great promise in clinical trials and hence a deeper understanding of the mechanism of their interaction with the receptor is now required. The structure of the CGRP receptor is unusual since it is comprised of a hetero-oligomeric complex between the calcitonin receptor-like receptor (CRL) and an accessory protein (RAMP1). Both the CLR and RAMP1 components have extracellular domains which interact with each other and together form part of the peptide-binding site. It seems likely that the antagonist binding site will also be located on the extracellular domains and indeed Trp-74 of RAMP1 has been shown to form part of the binding site for BIBN4096BS. However, despite a chimeric study demonstrating the role of the N-terminal domain of CLR in antagonist binding, no specific residues have been identified. Here we carry out a mutagenic screen of the extreme N-terminal domain of CLR (residues 23-63) and identify a mutant, Met-42-Ala, which displays 48-fold lower affinity for BIBN4096BS and almost 900-fold lower affinity for MK-0974. In addition, we confirm that the Trp-74-Lys mutation at human RAMP1 reduces BIBN4096BS affinity by over 300-fold and show for the first time a similar effect for MK-0974 affinity. The data suggest that the non-peptide antagonists occupy a binding site close to the interface of the N-terminal domains of CLR and RAMP1

    CGRP, adrenomedullin and adrenomedullin 2 display endogenous GPCR agonist bias in primary human cardiovascular cells.

    Get PDF
    Agonist bias occurs when different ligands produce distinct signalling outputs when acting at the same receptor. However, its physiological relevance is not always clear. Using primary human cells and gene editing techniques, we demonstrate endogenous agonist bias with physiological consequences for the calcitonin receptor-like receptor, CLR. By switching the receptor-activity modifying protein (RAMP) associated with CLR we can "re-route" the physiological pathways activated by endogenous agonists calcitonin gene-related peptide (CGRP), adrenomedullin (AM) and adrenomedullin 2 (AM2). AM2 promotes calcium-mediated nitric oxide signalling whereas CGRP and AM show pro-proliferative effects in cardiovascular cells, thus providing a rationale for the expression of the three peptides. CLR-based agonist bias occurs naturally in human cells and has a fundamental purpose for its existence. We anticipate this will be a starting point for more studies into RAMP function in native environments and their importance in endogenous GPCR signalling

    Engineering a Model Cell for Rational Tuning of GPCR Signaling.

    Get PDF
    G protein-coupled receptor (GPCR) signaling is the primary method eukaryotes use to respond to specific cues in their environment. However, the relationship between stimulus and response for each GPCR is difficult to predict due to diversity in natural signal transduction architecture and expression. Using genome engineering in yeast, we constructed an insulated, modular GPCR signal transduction system to study how the response to stimuli can be predictably tuned using synthetic tools. We delineated the contributions of a minimal set of key components via computational and experimental refactoring, identifying simple design principles for rationally tuning the dose response. Using five different GPCRs, we demonstrate how this enables cells and consortia to be engineered to respond to desired concentrations of peptides, metabolites, and hormones relevant to human health. This work enables rational tuning of cell sensing while providing a framework to guide reprogramming of GPCR-based signaling in other systems.BBSR

    The importance of structured noise in the generation of self-organizing tissue patterns through contact-mediated cell–cell signalling

    Get PDF
    Lateral inhibition provides the basis for a self-organizing patterning system in which distinct cell states emerge from an otherwise uniform field of cells. The development of the microchaete bristle pattern on the notum of the fruitfly, Drosophila melanogaster, has long served as a popular model of this process. We recently showed that this bristle pattern depends upon a population of dynamic, basal actin-based filopodia, which span multiple cell diameters. These protrusions establish transient signalling contacts between non-neighbouring cells, generating a type of structured noise that helps to yield a well-ordered and spaced pattern of bristles. Here, we develop a general model of protrusion-based patterning to analyse the role of noise in this process. Using a simple asynchronous cellular automata rule-based model we show that this type of structured noise drives the gradual refinement of lateral inhibition-mediated patterning, as the system moves towards a stable configuration in which cells expressing the inhibitory signal are near-optimally packed. By analysing the effects of introducing thresholds required for signal detection in this model of lateral inhibition, our study shows how filopodia-mediated cell–cell communication can generate complex patterns of spots and stripes, which, in the presence of signalling noise, align themselves across a patterning field. Thus, intermittent protrusion-based signalling has the potential to yield robust self-organizing tissue-wide patterns without the need to invoke diffusion-mediated signalling

    Considering the case for an antidepressant drug trial involving temporary deception: a qualitative enquiry of potential participants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systematic reviews of randomised placebo controlled trials of antidepressant medication show small and decreasing differences between pharmacological and placebo arms. In part this finding may relate to methodological problems with conventional trial designs, including their assumption of additivity between drug and placebo trial arms. Balanced placebo designs, which include elements of deception, may address the additivity question, but pose substantial ethical and pragmatic problems. This study aimed to ascertain views of potential study participants of the ethics and pragmatics of various balanced placebo designs, in order to inform the design of future antidepressant drug trials.</p> <p>Methods</p> <p>A qualitative approach was employed to explore the perspectives of general practitioners, psychiatrists, and patients with experience of depression. The doctors were chosen via purposive sampling, while patients were recruited through participating general practitioners. Three focus groups and 12 in-depth interviews were conducted. A vignette-based topic guide invited views on three deceptive strategies: post hoc, authorised and minimised deception. The focus groups and interviews were tape-recorded and transcribed. Transcripts were analysed thematically using Framework.</p> <p>Results</p> <p>Deception in non-research situations was typically perceived as acceptable within specific parameters. All participants could see the potential utility of introducing deception into trial designs, however views on the acceptability of deception within antidepressant drug trials varied substantially. Authorized deception was the most commonly accepted strategy, though some thought this would reduce the effectiveness of the design because participants would correctly guess the deceptive element. The major issues that affected views about the acceptability of deception studies were the welfare and capacity of patients, practicalities of trial design, and the question of trust.</p> <p>Conclusion</p> <p>There is a trade-off between pragmatic and ethical responses to the question of whether, and under what circumstances, elements of deception could be introduced into antidepressant drug trials. Ensuring adequate ethical safeguards within balanced placebo designs is likely to diminish their ability to address the crucial issue of additivity. The balanced placebo designs considered in this study are unlikely to be feasible in future trials of antidepressant medication. However there remains an urgent need to improve the quality of antidepressant drug trials.</p

    A Systematic Screen for Tube Morphogenesis and Branching Genes in the Drosophila Tracheal System

    Get PDF
    Many signaling proteins and transcription factors that induce and pattern organs have been identified, but relatively few of the downstream effectors that execute morphogenesis programs. Because such morphogenesis genes may function in many organs and developmental processes, mutations in them are expected to be pleiotropic and hence ignored or discarded in most standard genetic screens. Here we describe a systematic screen designed to identify all Drosophila third chromosome genes (∼40% of the genome) that function in development of the tracheal system, a tubular respiratory organ that provides a paradigm for branching morphogenesis. To identify potentially pleiotropic morphogenesis genes, the screen included analysis of marked clones of homozygous mutant tracheal cells in heterozygous animals, plus a secondary screen to exclude mutations in general β€œhouse-keeping” genes. From a collection including more than 5,000 lethal mutations, we identified 133 mutations representing ∼70 or more genes that subdivide the tracheal terminal branching program into six genetically separable steps, a previously established cell specification step plus five major morphogenesis and maturation steps: branching, growth, tubulogenesis, gas-filling, and maintenance. Molecular identification of 14 of the 70 genes demonstrates that they include six previously known tracheal genes, each with a novel function revealed by clonal analysis, and two well-known growth suppressors that establish an integral role for cell growth control in branching morphogenesis. The rest are new tracheal genes that function in morphogenesis and maturation, many through cytoskeletal and secretory pathways. The results suggest systematic genetic screens that include clonal analysis can elucidate the full organogenesis program and that over 200 patterning and morphogenesis genes are required to build even a relatively simple organ such as the Drosophila tracheal system

    Industrial scale high-throughput screening delivers multiple fast acting macrofilaricides.

    Get PDF
    Nematodes causing lymphatic filariasis and onchocerciasis rely on their bacterial endosymbiont, Wolbachia, for survival and fecundity, making Wolbachia a promising therapeutic target. Here we perform a high-throughput screen of AstraZeneca's 1.3 million in-house compound library and identify 5 novel chemotypes with faster in vitro kill rates (<2 days) than existing anti-Wolbachia drugs that cure onchocerciasis and lymphatic filariasis. This industrial scale anthelmintic neglected tropical disease (NTD) screening campaign is the result of a partnership between the Anti-Wolbachia consortium (Aβˆ™WOL) and AstraZeneca. The campaign was informed throughout by rational prioritisation and triage of compounds using cheminformatics to balance chemical diversity and drug like properties reducing the chance of attrition from the outset. Ongoing development of these multiple chemotypes, all with superior time-kill kinetics than registered antibiotics with anti-Wolbachia activity, has the potential to improve upon the current therapeutic options and deliver improved, safer and more selective macrofilaricidal drugs

    Social Bonding and Nurture Kinship: Compatibility between Cultural and Biological Approaches

    Full text link
    corecore