2,984 research outputs found
Coupling of transverse and longitudinal response in stiff polymers
The time-dependent transverse response of stiff polymers, represented as
weakly-bending wormlike chains (WLCs), is well-understood on the linear level,
where transverse degrees of freedom evolve independently from the longitudinal
ones. We show that, beyond a characteristic time scale, the nonlinear coupling
of transverse and longitudinal motion in an inextensible WLC significantly
weakens the polymer response compared to the widely used linear response
predictions. The corresponding feedback mechanism is rationalized by scaling
arguments and quantified by a multiple scale approach that exploits an inherent
separation of transverse and longitudinal correlation length scales. Crossover
scaling laws and exact analytical and numerical solutions for characteristic
response quantities are derived for different experimentally relevant setups.
Our findings are applicable to cytoskeletal filaments as well as DNA under
tension.Comment: 4 pages, 3 figures, 1 table; final versio
A Computational Procedure to Detect a New Type of High Dimensional Chaotic Saddle and its Application to the 3-D Hill's Problem
A computational procedure that allows the detection of a new type of
high-dimensional chaotic saddle in Hamiltonian systems with three degrees of
freedom is presented. The chaotic saddle is associated with a so-called
normally hyperbolic invariant manifold (NHIM). The procedure allows to compute
appropriate homoclinic orbits to the NHIM from which we can infer the existence
a chaotic saddle. NHIMs control the phase space transport across an equilibrium
point of saddle-centre-...-centre stability type, which is a fundamental
mechanism for chemical reactions, capture and escape, scattering, and, more
generally, ``transformation'' in many different areas of physics. Consequently,
the presented methods and results are of broad interest. The procedure is
illustrated for the spatial Hill's problem which is a well known model in
celestial mechanics and which gained much interest e.g. in the study of the
formation of binaries in the Kuiper belt.Comment: 12 pages, 6 figures, pdflatex, submitted to JPhys
Kinetic Accessibility of Buried DNA Sites in Nucleosomes
Using a theoretical model for spontaneous partial DNA unwrapping from
histones, we study the transient exposure of protein-binding DNA sites within
nucleosomes. We focus on the functional dependence of the rates for site
exposure and reburial on the site position, which is measurable experimentally
and pertinent to gene regulation. We find the dependence to be roughly
described by a random walker model. Close inspection reveals a surprising
physical effect of flexibility-assisted barrier crossing, which we characterize
within a toy model, the "semiflexible Brownian rotor."Comment: final version as published in Phys. Rev. Let
Telling time with an intrinsically noisy clock
Intracellular transmission of information via chemical and transcriptional
networks is thwarted by a physical limitation: the finite copy number of the
constituent chemical species introduces unavoidable intrinsic noise. Here we
provide a method for solving for the complete probabilistic description of
intrinsically noisy oscillatory driving. We derive and numerically verify a
number of simple scaling laws. Unlike in the case of measuring a static
quantity, response to an oscillatory driving can exhibit a resonant frequency
which maximizes information transmission. Further, we show that the optimal
regulatory design is dependent on the biophysical constraints (i.e., the
allowed copy number and response time). The resulting phase diagram illustrates
under what conditions threshold regulation outperforms linear regulation.Comment: 10 pages, 5 figure
Hydrodynamic induced deformation and orientation of a microscopic elastic filament
We describe simulations of a microscopic elastic filament immersed in a fluid
and subject to a uniform external force. Our method accounts for the
hydrodynamic coupling between the flow generated by the filament and the
friction force it experiences. While models that neglect this coupling predict
a drift in a straight configuration, our findings are very different. Notably,
a force with a component perpendicular to the filament axis induces bending and
perpendicular alignment. Moreover, with increasing force we observe four shape
regimes, ranging from slight distortion to a state of tumbling motion that
lacks a steady state. We also identify the appearance of marginally stable
structures. Both the instability of these shapes and the observed alignment can
be explained by the combined action of induced bending and non-local
hydrodynamic interactions. Most of these effects should be experimentally
relevant for stiff micro-filaments, such as microtubules.Comment: three figures. To appear in Phys Rev Let
Self-organized Beating and Swimming of Internally Driven Filaments
We study a simple two-dimensional model for motion of an elastic filament
subject to internally generated stresses and show that wave-like propagating
shapes which can propel the filament can be induced by a self-organized
mechanism via a dynamic instability. The resulting patterns of motion do not
depend on the microscopic mechanism of the instability but only of the filament
rigidity and hydrodynamic friction. Our results suggest that simplified
systems, consisting only of molecular motors and filaments could be able to
show beating motion and self-propulsion.Comment: 8 pages, 2 figures, REVTe
Control of Integrable Hamiltonian Systems and Degenerate Bifurcations
We discuss control of low-dimensional systems which, when uncontrolled, are
integrable in the Hamiltonian sense. The controller targets an exact solution
of the system in a region where the uncontrolled dynamics has invariant tori.
Both dissipative and conservative controllers are considered. We show that the
shear flow structure of the undriven system causes a Takens-Bogdanov
birfurcation to occur when control is applied. This implies extreme noise
sensitivity. We then consider an example of these results using the driven
nonlinear Schrodinger equation.Comment: 25 pages, 11 figures, resubmitted to Physical Review E March 2004
(originally submitted June 2003), added content and reference
- …