2,383 research outputs found
Extreme Supernova Models for the Superluminous Transient ASASSN-15lh
The recent discovery of the unprecedentedly superluminous transient
ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the
power-input models that have been proposed for superluminous supernovae. Here
we examine some of the few viable interpretations of ASASSN-15lh in the context
of a stellar explosion, involving combinations of one or more power inputs. We
model the lightcurve of ASASSN-15lh with a hybrid model that includes
contributions from magnetar spin-down energy and hydrogen-poor circumstellar
interaction. We also investigate models of pure circumstellar interaction with
a massive hydrogen-deficient shell and discuss the lack of interaction features
in the observed spectra. We find that, as a supernova ASASSN-15lh can be best
modeled by the energetic core-collapse of a ~40 Msun star interacting with a
hydrogen-poor shell of ~20 Msun. The circumstellar shell and progenitor mass
are consistent with a rapidly rotating pulsational pair-instability supernova
progenitor as required for strong interaction following the final supernova
explosion. Additional energy injection by a magnetar with initial period of 1-2
ms and magnetic field of 0.1-1 x 10^14 G may supply the excess luminosity
required to overcome the deficit in single-component models, but this requires
more fine-tuning and extreme parameters for the magnetar, as well as the
assumption of efficient conversion of magnetar energy into radiation. We thus
favor a single-input model where the reverse shock formed in a strong SN
ejecta-CSM interaction following a very powerful core-collapse SN explosion can
supply the luminosity needed to reproduce the late-time UV-bright plateau.Comment: 8 pages, 3 figure
Effectiveness of a social support intervention on infant feeding practices : randomised controlled trial
Background: To assess whether monthly home visits from trained volunteers could improve infant feeding practices at age 12 months, a randomised controlled trial was carried out in two disadvantaged inner city London boroughs.
Methods: Women attending baby clinics with their infants (312) were randomised to receive monthly home visits from trained volunteers over a 9-month period (intervention group) or standard professional care only (control group). The primary outcome was vitamin C intakes from fruit. Secondary outcomes included selected macro and micro-nutrients, infant feeding habits, supine length and weight. Data were collected at baseline when infants were aged approximately 10 weeks, and subsequently when the child was 12 and 18 months old.
Results: Two-hundred and twelve women (68%) completed the trial. At both follow-up points no significant differences were found between the groups for vitamin C intakes from fruit or other nutrients. At first follow-up, however, infants in the intervention group were significantly less likely to be given goats’ or soya milks, and were more likely to have three solid meals per day. At the second follow-up, intervention group children were significantly less likely to be still using a bottle. At both follow-up points, intervention group children also consumed significantly more specific fruit and vegetables.
Conclusions: Home visits from trained volunteers had no significant effect on nutrient intakes but did promote some other recommended infant feeding practices
Dynamical epidemic suppression using stochastic prediction and control
We consider the effects of noise on a model of epidemic outbreaks, where the
outbreaks appear. randomly. Using a constructive transition approach that
predicts large outbreaks, prior to their occurrence, we derive an adaptive
control. scheme that prevents large outbreaks from occurring. The theory
inapplicable to a wide range of stochastic processes with underlying
deterministic structure.Comment: 14 pages, 6 figure
Internal displacement reactions in multicomponent oxides. Part I. Line compounds with narrow homogeneity range
As a model of an internal displacement reaction involving a ternary oxide "line" compound, the following reaction was studied at 1273 K as a function of time, t: Fe + NiTiO3 = "Ni" + "FeTiO3" Both polycrystalline and single-crystal materials were used as the starting NiTiO3 oxide. During the reaction, the Ni in the oxide compound is displaced by Fe and it precipitates as a γ-(Ni-Fe) alloy. The reaction preserves the starting ilmenite structure. The product oxide has a constant Ti concentration across the reaction zone, with variation in the concentration of Fe and Ni, consistent with ilmenite composition. In the case of single-crystal NiTiO3 as the starting oxide, the γ alloy has a "layered" structure and the layer separation is suggestive of Liesegang-type precipitation. In the case of polycrystalline NiTiO3 as the starting oxide, the alloy precipitates mainly along grain boundaries, with some particles inside the grains. A concentration gradient exists in the alloy across the reaction zone and the composition is >95 at. pct Ni at the reaction front. The parabolic rate constant for the reaction is kp = 1.3 × 10-12 m2 s-1 and is nearly the same for both single-crystal and polycrystalline oxides
Internal displacement reactions in multicomponent oxides: Part II. Oxide solid solutions of wide composition range
As models of internal displacement reactions in oxide solid solutions, the following reactions were studied at 1273 K as a function of time: Fe + NixMg1-x)O = Ni + (FexMg1-x)O Fe + (Co0.5Mg0.5)O = Co + (Fe0.5Mg0.5)O In both reactions, Ni or Co in the starting oxide is displaced by Fe and the γ-(Ni-Fe) or (Co-Fe) alloy is precipitated. In the reaction zone, composition gradients develop in both product phases, viz., the oxide and the alloy precipitate. The Ni (or Co) concentration of the alloy precipitate increases towards the reaction front. In the product oxide, the "inert" Mg diffuses toward the reaction front along with the Fe, while the Ni (or Co) diffusion is in the opposite direction, towards the Fe/boundary. The shape of the composition profiles for Mg and Fe in the product oxide suggests that cross-coefficient terms in the generalized flux equations contribute significantly to the cation flux. The parabolic rate constants of reactions involving Fe/(NixMg1-x)O decrease by nearly four orders of magnitude when x decreases from 1 to 0.1
Self-organized Beating and Swimming of Internally Driven Filaments
We study a simple two-dimensional model for motion of an elastic filament
subject to internally generated stresses and show that wave-like propagating
shapes which can propel the filament can be induced by a self-organized
mechanism via a dynamic instability. The resulting patterns of motion do not
depend on the microscopic mechanism of the instability but only of the filament
rigidity and hydrodynamic friction. Our results suggest that simplified
systems, consisting only of molecular motors and filaments could be able to
show beating motion and self-propulsion.Comment: 8 pages, 2 figures, REVTe
Geometrical Models of the Phase Space Structures Governing Reaction Dynamics
Hamiltonian dynamical systems possessing equilibria of stability type display \emph{reaction-type
dynamics} for energies close to the energy of such equilibria; entrance and
exit from certain regions of the phase space is only possible via narrow
\emph{bottlenecks} created by the influence of the equilibrium points. In this
paper we provide a thorough pedagogical description of the phase space
structures that are responsible for controlling transport in these problems. Of
central importance is the existence of a \emph{Normally Hyperbolic Invariant
Manifold (NHIM)}, whose \emph{stable and unstable manifolds} have sufficient
dimensionality to act as separatrices, partitioning energy surfaces into
regions of qualitatively distinct behavior. This NHIM forms the natural
(dynamical) equator of a (spherical) \emph{dividing surface} which locally
divides an energy surface into two components (`reactants' and `products'), one
on either side of the bottleneck. This dividing surface has all the desired
properties sought for in \emph{transition state theory} where reaction rates
are computed from the flux through a dividing surface. In fact, the dividing
surface that we construct is crossed exactly once by reactive trajectories, and
not crossed by nonreactive trajectories, and related to these properties,
minimizes the flux upon variation of the dividing surface.
We discuss three presentations of the energy surface and the phase space
structures contained in it for 2-degree-of-freedom (DoF) systems in the
threedimensional space , and two schematic models which capture many of
the essential features of the dynamics for -DoF systems. In addition, we
elucidate the structure of the NHIM.Comment: 44 pages, 38 figures, PDFLaTe
- …