25 research outputs found

    Rapid loss of complex polymers and pyrogenic carbon in subsoils under whole-soil warming

    Full text link
    Subsoils contain more than half of soil organic carbon (SOC) and are expected to experience rapid warming in the coming decades. Yet our understanding of the stability of this vast carbon pool under global warming is uncertain. In particular, the fate of complex molecular structures (polymers) remains debated. Here we show that 4.5 years of whole-soil warming (+4 °C) resulted in less polymeric SOC (sum of specific polymers contributing to SOC) in the warmed subsoil (20–90 cm) relative to control, with no detectable change in topsoil. Warming stimulated the subsoil loss of lignin phenols (−17 ± 0%) derived from woody plant biomass, hydrolysable lipids cutin and suberin, derived from leaf and woody plant biomass (−28 ± 3%), and pyrogenic carbon (−37 ± 8%) produced during incomplete combustion. Given that these compounds have been proposed for long-term carbon sequestration, it is notable that they were rapidly lost in warmed soils. We conclude that complex polymeric carbon in subsoil is vulnerable to decomposition and propose that molecular structure alone may not protect compounds from degradation under future warming

    Climate Response of Larch and Birch Forests across an Elevational Transect and Hemisphere-Wide Comparisons, Kamchatka Peninsula, Russian Far East

    Get PDF
    Kamchatka’s forests span across the peninsula’s diverse topography and provide a wide range of physiographic and elevational settings that can be used to investigate how forests are responding to climate change and to anticipate future response. Birch (Betula ermanii Cham.) and larch (Larix gmelinii (Rupr.) Kuzen) were sampled at eight new sites and together with previous collections were compared with monthly temperature and precipitation records to identify their climate response. Comparisons show that tree-ring widths in both species are primarily influenced by May through August temperatures of the current growth year, and that there is a general increase in temperature sensitivity with altitude. The ring-width data for each species were also combined into regional chronologies. The resulting composite larch chronology shows a strong resemblance to a Northern Hemisphere (NH) tree-ring based temperature reconstruction with the larch series tracking NH temperatures closely through the past 300 years. The composite birch ring-width series more closely reflects the Pacific regional coastal late summer temperatures. These new data improve our understanding of the response of forests to climate and show the low frequency warming noted in other, more continental records from high latitudes of the Northern Hemisphere. Also evident in the ring-width record is that the larch and birch forests continue to track the strong warming of interior Kamchatka

    Warming and elevated CO2 promote rapid incorporation and degradation of plant-derived organic matter in an ombrotrophic peatland

    Full text link
    Rising temperatures have the potential to directly affect carbon cycling in peatlands by enhancing organic matter (OM) decomposition, contributing to the release of CO2 and CH4 to the atmosphere. In turn, increasing atmospheric CO2 concentration may stimulate photosynthesis, potentially increasing plant litter inputs belowground and transferring carbon from the atmosphere into terrestrial ecosystems. Key questions remain about the magnitude and rate of these interacting and opposing environmental change drivers. Here, we assess the incorporation and degradation of plant- and microbe-derived OM in an ombrotrophic peatland after 4 years of whole-ecosystem warming (+0, +2.25, +4.5, +6.75 and +9°C) and two years of elevated CO2 manipulation (500 ppm above ambient). We show that OM molecular composition was substantially altered in the aerobic acrotelm, highlighting the sensitivity of acrotelm carbon to rising temperatures and atmospheric CO2 concentration. While warming accelerated OM decomposition under ambient CO2, new carbon incorporation into peat increased in warming × elevated CO2 treatments for both plant- and microbe-derived OM. Using the isotopic signature of the applied CO2 enrichment as a label for recently photosynthesized OM, our data demonstrate that new plant inputs have been rapidly incorporated into peat carbon. Our results suggest that under current hydrological conditions, rising temperatures and atmospheric CO2 levels will likely offset each other in boreal peatlands

    Whole-soil warming decreases abundance and modifies the community structure of microorganisms in the subsoil but not in surface soil

    Full text link
    The microbial community composition in subsoils remains understudied, and it is largely unknown whether subsoil microorganisms show a similar response to global warming as microorganisms at the soil surface do. Since microorganisms are the key drivers of soil organic carbon decomposition, this knowledge gap causes uncertainty in the predictions of future carbon cycling in the subsoil carbon pool (> 50 % of the soil organic carbon stocks are below 30 cm soil depth). In the Blodgett Forest field warming experiment (California, USA) we investigated how +4 ∘C warming in the whole-soil profile to 100 cm soil depth for 4.5 years has affected the abundance and community structure of microorganisms. We used proxies for bulk microbial biomass carbon (MBC) and functional microbial groups based on lipid biomarkers, such as phospholipid fatty acids (PLFAs) and branched glycerol dialkyl glycerol tetraethers (brGDGTs). With depth, the microbial biomass decreased and the community composition changed. Our results show that the concentration of PLFAs decreased with warming in the subsoil (below 30 cm) by 28 % but was not affected in the topsoil. Phospholipid fatty acid concentrations changed in concert with soil organic carbon. The microbial community response to warming was depth dependent. The relative abundance of Actinobacteria increased in warmed subsoil, and Gram+ bacteria in subsoils adapted their cell membrane structure to warming-induced stress, as indicated by the ratio of anteiso to iso branched PLFAs. Our results show for the first time that subsoil microorganisms can be more affected by warming compared to topsoil microorganisms. These microbial responses could be explained by the observed decrease in subsoil organic carbon concentrations in the warmed plots. A decrease in microbial abundance in warmed subsoils might reduce the magnitude of the respiration response over time. The shift in the subsoil microbial community towards more Actinobacteria might disproportionately enhance the degradation of previously stable subsoil carbon, as this group is able to metabolize complex carbon sources

    Climate warming and elevated CO2 alter peatland soil carbon sources and stability

    Get PDF
    Peatlands are an important carbon (C) reservoir storing one-third of global soil organic carbon (SOC), but little is known about the fate of these C stocks under climate change. Here, we examine the impact of warming and elevated atmospheric CO2_{2} concentration (eCO2_{2}) on the molecular composition of SOC to infer SOC sources (microbe-, plant- and fire-derived) and stability in a boreal peatland. We show that while warming alone decreased plant- and microbe-derived SOC due to enhanced decomposition, warming combined with eCO2_{2} increased plant-derived SOC compounds. We further observed increasing root-derived inputs (suberin) and declining leaf/needle-derived inputs (cutin) into SOC under warming and eCO2_{2}. The decline in SOC compounds with warming and gains from new root-derived C under eCO2_{2}, suggest that warming and eCO2_{2} may shift peatland C budget towards pools with faster turnover. Together, our results indicate that climate change may increase inputs and enhance decomposition of SOC potentially destabilising C storage in peatlands

    Tree-ring investigations into changing climatic responses of yellow-cedar, Glacier Bay, Alaska

    Get PDF
    Yellow-cedar (Callitropsis nootkatensis (D. Don) à–rsted ex D.P. Little) is in a century-long decline coinciding with the end of the Little Ice Age (LIA). The leading hypothesis explaining this decline is a decrease in insulating snowpack due to warming and increased susceptibility to damaging frosts in the root zone. A ring-width series from yellow-cedar on Excursion Ridge (260 m a.s.l.) in Glacier Bay National Park and Preserve, Alaska, and another from trees on Pleasant Island (150 m a.s.l.) in the Tongass National Forest in Icy Strait were compared with regional monthly temperature and precipitation data from Sitka, Alaska, to investigate the changing growth response to temperature at these sites. Comparisons with monthly temperatures from 1832 to 1876 during the end of the Little Ice Age show that the high-elevation Excursion Ridge and the low-elevation Pleasant Island sites strongly favored warmer January through July temperatures. Both tree populations have markedly changed their response from a positive to a strong negative correlation with January through July temperatures since 1950. This strong negative response to warming by the yellow-cedar together with a positive relationship with total March and April precipitation suggests that these yellow-cedar sites may be susceptible to decline. Furthermore, these analyses are consistent with the hypothesis that the yellow-cedar decline is linked to decreased snowpack

    Timing and Potential Causes of 19th-Century Glacier Advances in Coastal Alaska Based on Tree-Ring Dating and Historical Accounts

    Get PDF
    The Little Ice Age (LIA), ca. CE 1250–1850, was a cold period of global extent, with the nature and timing of reduced temperatures varying by region. The Gulf of Alaska (GOA) is a key location to study the climatic drivers of glacier fluctuations during the LIA because dendrochronological techniques can provide precise ages of ice advances and retreats. Here, we use dendrochronology to date the most recent advance of La Perouse Glacier in the Fairweather Range of Southeast Alaska. After maintaining a relatively contracted state since at least CE 1200, La Perouse advanced to its maximum LIA position between CE 1850 and 1895. Like many other glaciers bordering the GOA, the La Perouse Glacier reached this maximum position relatively late in the LIA compared with glaciers in other regions. This is curious because reconstructions of paleoclimate in the GOA region indicate the 19th century was not the coldest period of the LIA. Using newly available paleoclimate data, we hypothesize that a combination of moderately cool summers accompanying the Dalton Solar Minimum and exceptionally snowy winters associated with a strengthened Aleutian Low could have caused these relatively late LIA advances. Such a scenario implies that winter climate processes, which are heavily influenced by ocean-atmospheric variability in the North Pacific region, have modulated these coastal glaciers’ sensitivity to shifts in summer temperatures

    Is the modern-day dieback of yellow-cedar unprecedented?

    No full text
    In Southeast Alaska, many stands of yellow-cedar (Callitropsis nootkatensis D. Don; Oerst. ex D.P. Little; hereafter: ‘YC’) contain numerous standing, dead snags. Snag-age estimates based on morphology have been used to support the interpretation that a warming climate after ca. 1880 triggered unprecedented YC dieback. Here we present new estimates of YC snag longevity by cross-dating 61 snags with morphologies that suggest they stood dead for extended periods. All but four of these snags have lost their outermost rings to decay, so we estimate when they died using a new method based on wood-ablation rates measured in six living trees that display partial cambial dieback. Results indicate that ~59% of YC snags that lost their branches to decay (Class 5 snags) have remained standing for > 200 years, and some for as long as 450 years (snag longevity mean SD: 233 92 years). These findings, along with supporting evidence from historical photos, dendrochronology, and snag-morphology surveys in the published literature suggest that episodes of YC dieback also occurred before 1880 and before significant anthropogenic warming began. The roles played by climate change in these earlier dieback events remain to be further explored.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Climate Response of Metasequoia glyptostroboides Inferred from Tree Rings, Secrest Arboretum, Wooster, Ohio, USA

    No full text
    Metasequoia glyptostroboides, a deciduous gymnosperm, also known as dawn redwood, was thought to be extinct until living members of the species were found in China in 1943. Analyzing the climate response of a transplanted stand of the trees can give insights into their physiological plasticity, into their use in restoration and reforestation, as well as into interpreting the environmental conditions of the geologic past from fossil Metasequoia. An annual ring-width chronology—spanning 1955 to 2010 and based on a stand of 19 M. glyptostroboides trees planted in Secrest Arboretum in northeast Ohio, USA—shows negative correlations with maximum monthly temperatures: with the strongest relationship with February and the warm months of June and July, all significant at the 99% confidence levels. A positive May to June precipitation correlation is the strongest moisture signal (p < 0.05) and the narrowest rings in the chronology occurred during the drought of 1987 to 1988, consistent with one of the warmest and driest Junes on record. These results have implications for the future as climate change affects the native and transplanted range of this species. Future response of this species to a changing climate will depend on the relative rates of warming maximum temperatures in the winter and summer, as well as changing moisture conditions during the summer months

    Tree Ring—Dated Glacial History for the First Millennium c.e., Casement Glacier and Adams Inlet, Glacier Bay, Alaska, U.S.A.

    No full text
    alendar dating of tree-ring series from 16 logs sampled near the margin of Casement Glacier combined with tree-ring dates on 36 detrital logs from Adams Inlet, Glacier Bay National Park and Preserve, Alaska, show killing of trees by ice and lake sediments from the mid-sixth through mid-seventh centuries c.e. The dates from the land-terminating Casement Glacier show ice advance into a forest between 560 and 570 c.e. within a few kilometers of the 2011 retreating margin. Advance of the tidewater glacier in Muir Inlet blocked off Adams Inlet forming Lake Adams between 540 and 640 c.e. This glacier and lake history for Glacier Bay is consistent with other land-terminating ice expansions across the Gulf of Alaska that similarly show advance centered on 600 c.e., as well as other proxy records from lakes all suggesting cooling during this interval. The cooling closely follows a series of eruptions in the mid to late sixth century, which may have contributed to the cooling. Radiocarbon ages in Adams Inlet suggest that Lake Adams persisted through 880 cal. yr c.e. and drained by 1170 cal. yr c.e. Ice retreat and this lake drainage are broadly coincident with Medieval warming recognized along the Gulf of Alaska in dendroclimatic reconstructions. Shortly after this retreat, Little Ice Age readvance occurred with Casement Glacier coalescing with glaciers in Adams Inlet and the West Arm, subsequently filling all of Glacier Bay to its Holocene maximum by 1750 c.e
    corecore