83 research outputs found

    Looking beyond the Thermal Horizon: Hidden Symmetries in Chiral Models

    Get PDF
    In thermal states of chiral theories, as recently investigated by H.-J. Borchers and J. Yngvason, there exists a rich group of hidden symmetries. Here we show that this leads to a radical converse of of the Hawking-Unruh observation in the following sense. The algebraic commutant of the algebra associated with a (heat bath) thermal chiral system can be used to reprocess the thermal system into a ground state system on a larger algebra with a larger localization space-time. This happens in such a way that the original system appears as a kind of generalized Unruh restriction of the ground state sytem and the thermal commutant as being transmutated into newly created ``virgin space-time region'' behind a horizon. The related concepts of a ``chiral conformal core'' and the possibility of a ``blow-up'' of the latter suggest interesting ideas on localization of degrees of freedom with possible repercussion on how to define quantum entropy of localized matter content in Local Quantum Physics.Comment: 17 pages, tcilatex, still more typos removed and one reference correcte

    Modular Groups of Quantum Fields in Thermal States

    Full text link
    For a quantum field in a thermal equilibrium state we discuss the group generated by time translations and the modular action associated with an algebra invariant under half-sided translations. The modular flows associated with the algebras of the forward light cone and a space-like wedge admit a simple geometric description in two dimensional models that factorize in light-cone coordinates. At large distances from the domain boundary compared to the inverse temperature the flow pattern is essentially the same as time translations, whereas the zero temperature results are approximately reproduced close to the edge of the wedge and the apex of the cone. Associated with each domain there is also a one parameter group with a positive generator, for which the thermal state is a ground state. Formally, this may be regarded as a certain converse of the Unruh-effect.Comment: 28 pages, 4 figure

    Comment on: Modular Theory and Geometry

    Full text link
    In this note we comment on part of a recent article by B. Schroer and H.-W. Wiesbrock. Therein they calculate some new modular structure for the U(1)-current-algebra (Weyl-algebra). We point out that their findings are true in a more general setting. The split-property allows an extension to doubly-localized algebras.Comment: 13 pages, corrected versio

    Endomorphism Semigroups and Lightlike Translations

    Full text link
    Certain criteria are demonstrated for a spatial derivation of a von Neumann algebra to generate a one-parameter semigroup of endomorphisms of that algebra. These are then used to establish a converse to recent results of Borchers and of Wiesbrock on certain one-parameter semigroups of endomorphisms of von Neumann algebras (specifically, Type III_1 factors) that appear as lightlike translations in the theory of algebras of local observables.Comment: 9 pages, Late

    The Quest for Understanding in Relativistic Quantum Physics

    Full text link
    We discuss the status and some perspectives of relativistic quantum physics.Comment: Invited contribution to the Special Issue 2000 of the Journal of Mathematical Physics, 38 pages, typos corrected and references added, as to appear in JM

    How to determine a quantum state by measurements: The Pauli problem for a particle with arbitrary potential

    Get PDF
    The problem of reconstructing a pure quantum state ¿¿> from measurable quantities is considered for a particle moving in a one-dimensional potential V(x). Suppose that the position probability distribution ¿¿(x,t)¿2 has been measured at time t, and let it have M nodes. It is shown that after measuring the time evolved distribution at a short-time interval ¿t later, ¿¿(x,t+¿t)¿2, the set of wave functions compatible with these distributions is given by a smooth manifold M in Hilbert space. The manifold M is isomorphic to an M-dimensional torus, TM. Finally, M additional expectation values of appropriately chosen nonlocal operators fix the quantum state uniquely. The method used here is the analog of an approach that has been applied successfully to the corresponding problem for a spin system

    Anomalous Scale Dimensions from Timelike Braiding

    Full text link
    Using the previously gained insight about the particle/field relation in conformal quantum field theories which required interactions to be related to the existence of particle-like states associated with fields of anomalous scaling dimensions, we set out to construct a classification theory for the spectra of anomalous dimensions. Starting from the old observations on conformal superselection sectors related to the anomalous dimensions via the phases which appear in the spectral decomposition of the center of the conformal covering group Z(SO(d,2)~),Z(\widetilde{SO(d,2)}), we explore the possibility of a timelike braiding structure consistent with the timelike ordering which refines and explains the central decomposition. We regard this as a preparatory step in a new construction attempt of interacting conformal quantum field theories in D=4 spacetime dimensions. Other ideas of constructions based on the AdS5AdS_{5}-CQFT4CQFT_{4} or the perturbative SYM approach in their relation to the present idea are briefly mentioned.Comment: completely revised, updated and shortened replacement, 24 pages tcilatex, 3 latexcad figure

    Pauli problem for a spin of arbitrary length: A simple method to determine its wave function

    Get PDF
    The problem of determining a pure state vector from measurements is investigated for a quantum spin of arbitrary length. Generically, only a finite number of wave functions is compatible with the intensities of the spin components in two different spatial directions, measured by a Stern-Gerlach apparatus. The remaining ambiguity can be resolved by one additional well-defined measurement. This method combines efficiency with simplicity: only a small number of quantities have to be measured and the experimental setup is elementary. Other approaches to determine state vectors from measurements, also known as the ‘‘Pauli problem,’’ are reviewed for both spin and particle systems
    corecore