8 research outputs found

    The interaction between the Western Indian Ocean and ENSO in CESM

    Get PDF
    Several previous studies have suggested that a cool western Indian Ocean may induce convection over Indonesia, leading to surface convergence and easterlies over the western equatorial Pacific Ocean. These easterlies then increase the Pacific Warm Water Volume favouring El Niño in the next year. We investigate this mechanism of Indian-Pacific interaction using output from two simulations (at 0. 1 ∘ and 1 ∘ ocean model resolution) with the Community Earth System Model (CESM). No conclusive evidence for the suggested interaction mechanism is found in CESM. Like many other coupled models, CESM has an overly strong sea surface temperature variability in the eastern Indian Ocean due to an exaggerated sensitivity of the sea surface temperature to thermocline variations. Due to this bias the effect of the western Indian Ocean signals on the Pacific, as found from observational analysis, is hidden. Our analysis shows that this bias can be traced to errors in the time-mean vertical temperature profile in the Indian Ocean. This bias needs to be reduced to allow a better investigation of the subtle interactions between the Indian and Pacific Oceans

    The influence of the Indian Ocean on ENSO stability and flavor

    No full text
    The effect of long-term trends and interannual, ENSO-driven variability in the Indian Ocean (IO) on the stability and spatial pattern of ENSO is investigated with an intermediate-complexity two-basin model. The Pacific basin is modeled using a fully coupled (i.e., generating its own background state) Zebiak-Cane model. IO sea surface temperature (SST) is represented by a basinwide warming pattern whose strength is constant or varies at a prescribed lag to ENSO. Both basins are coupled through an atmosphere transferring information between them. For the covarying IO SST, a warm IO during the peak of El Niño (La Niña) dampens (destabilizes) ENSO, and a warm IO during the transition from El Niño to La Niña (La Niña to El Niño) shortens (lengthens) the period. The influence of the IO on the spatial pattern of ENSO is small. For constant IO warming, the ENSO cycle is destabilized because stronger easterlies induce more background upwelling, more thermocline steepening, and a stronger Bjerknes feedback. The SST signal at the east coast weakens or reverses sign with respect to the main ENSO signal [i.e., ENSO resembles central Pacific (CP) El Niños]. This is due to a reduced sensitivity of the SST to thermocline variations in case of a shallow background thermocline, as found near the east coast for a warm IO. With these results, the recent increase in CP El Niño can possibly be explained by the substantial IO (and west Pacific) warming over the last decades

    Complementing CO2 emission reduction by solar radiation management might strongly enhance future welfare

    No full text
    Solar radiation management (SRM) has been proposed as a means to reduce global warming in spite of high greenhouse-gas concentrations and to lower the chance of warming-induced tipping points. However, SRM may cause economic damages and its feasibility is still uncertain. To investigate the trade-off between these (economic) gains and damages, we incorporate SRM into a stochastic dynamic integrated assessment model and perform the first rigorous cost-benefit analysis of sulfate-based SRM under uncertainty, treating warming-induced climate tipping and SRM failure as stochastic elements. We find that within our model, SRM has the potential to greatly enhance future welfare and merits being taken seriously as a policy option. However, if only SRM and no CO2 abatement is used, global warming is not stabilised and will exceed 2 K. Therefore, even if successful, SRM can not replace but only complement CO2 abatement. The optimal policy combines CO2 abatement and modest SRM and succeeds in keeping global warming below 2 K

    The influence of atmospheric convection on the interaction between the Indian Ocean and ENSO

    No full text
    In recent years it has been proposed that a negative (positive) Indian Ocean dipole (IOD) in boreal autumn favors an El Niño (La Niña) at a lead time of 15 months. Observational analysis suggests that a negative IOD might be accompanied by easterly anomalies over the western Pacific. Such easterlies can enhance the western Pacific warm water volume, thus favoring El Niño development from the following boreal spring onward. However, a Gill-model response to a negative IOD forcing would lead to nearly zero winds over the western Pacific. The authors hypothesize that a negative IOD-or even a cool western Indian Ocean alone-leads to low-level air convergence and hence enhanced convectional heating over the Maritime Continent, which in turn amplifies the wind convergence so as to cause easterly winds over the western Pacific. This hypothesis is tested by coupling an idealized Indian Ocean model and a convective feedback model over the Maritime Continent to the Zebiak-Cane model. It is found that, for a sufficiently strong convection feedback, a negative (positive) IOD indeed forces easterlies (westerlies) over the western Pacific. The contribution from the eastern IOD pole dominates. IOD variability is found to destabilize the El Niño-Southern Oscillation (ENSO) mode, whereas Indian Ocean basinwide warming (IOB) variability dampens ENSO, even in the presence of convection. The influence of the Indian Ocean on the spectral properties of ENSO is dominated by the IOB, while the IOD is a better predictor for individual ENSO events

    Complementing CO2 emission reduction by solar radiation management might strongly enhance future welfare

    No full text
    Solar radiation management (SRM) has been proposed as a means to reduce global warming in spite of high greenhouse-gas concentrations and to lower the chance of warming-induced tipping points. However, SRM may cause economic damages and its feasibility is still uncertain. To investigate the trade-off between these (economic) gains and damages, we incorporate SRM into a stochastic dynamic integrated assessment model and perform the first rigorous cost-benefit analysis of sulfate-based SRM under uncertainty, treating warming-induced climate tipping and SRM failure as stochastic elements. We find that within our model, SRM has the potential to greatly enhance future welfare and merits being taken seriously as a policy option. However, if only SRM and no CO2 abatement is used, global warming is not stabilised and will exceed 2 K. Therefore, even if successful, SRM can not replace but only complement CO2 abatement. The optimal policy combines CO2 abatement and modest SRM and succeeds in keeping global warming below 2 K
    corecore