107 research outputs found

    A first search of transients in the Galactic Center from 230 GHz ALMA observations

    Full text link
    The Galactic Center (GC) presents one of the highest stellar densities in our Galaxy, making its surroundings an environment potentially rich in radio transients, such as pulsars and different kinds of flaring activity. In this paper, we present the first study of transient activity in the region of the GC based on Atacama Large Millimeter/submillimeter (mm/submm) Array (ALMA) continuum observations at 230 GHz. This search is based on a new self-calibration algorithm, especially designed for variability detection in the GC field. Using this method, we have performed a search of radio transients in the effective field of view of~∼30 \sim 30\,arcseconds of the GC central supermassive black hole Sagittarius A* (SgrA*) using ALMA 230 GHz observations taken during the 2017 Event Horizon Telescope (EHT) campaign, which span several observing hours (5-10) on 2017 April 6, 7, and 11. This calibration method allows one to disentangle the variability of unresolved SgrA* from any potential transient emission in the wider field of view and residual effects of the imperfect data calibration. Hence, a robust statistical criterion to identify real transients can be established: the event should survive at least three times the correlation time and it must have a peak excursion of at least seven times the instantaneous root-mean-square between consecutive images. Our algorithms are successfully tested against realistic synthetic simulations of transient sources in the GC field. Having checked the validity of the statistical criterion, we provide upper limits for transient activity in the effective field of view of the GC at 230 GHz.Comment: Accepted for publication in Astronomy and Astrophysic

    Orbital configurations of spaceborne interferometers for studying photon rings of supermassive black holes

    Full text link
    Recent advances in technology coupled with the progress of observational radio astronomy methods resulted in achieving a major milestone of astrophysics - a direct image of the shadow of a supermassive black hole, taken by the Earth-based Event Horizon Telescope (EHT). The EHT was able to achieve a resolution of ∼\sim20 μ\muas, enabling it to resolve the shadows of the black holes in the centres of two celestial objects: the supergiant elliptical galaxy M87 and the Milky Way Galaxy. The EHT results mark the start of a new round of development of next generation Very Long Baseline Interferometers (VLBI) which will be able to operate at millimetre and sub-millimetre wavelengths. The inclusion of baselines exceeding the diameter of the Earth and observation at as short a wavelength as possible is imperative for further development of high resolution astronomical observations. This can be achieved by a spaceborne VLBI system. We consider the preliminary mission design of such a system, specifically focused on the detection and analysis of photon rings, an intrinsic feature of supermassive black holes. Optimised Earth, Sun-Earth L2 and Earth-Moon L2 orbit configurations for the space interferometer system are presented, all of which provide an order of magnitude improvement in resolution compared to the EHT. Such a space-borne interferometer would be able to conduct a comprehensive survey of supermassive black holes in active galactic nuclei and enable uniquely robust and accurate tests of strong gravity, through detection of the photon ring features.Comment: Accepted for publication in Acta Astronautica. 40 pages, 13 figure
    • …
    corecore