174 research outputs found
A breakthrough on Amanita phalloides poisoning: an effective antidotal effect by polymyxin B
Amanita phalloides is responsible for more than 90 % of mushroom-related fatalities, and no effective antidote is available. a-Amanitin, the main toxin of A. phalloides, inhibits RNA polymerase II (RNAP II), causing hepatic and kidney failure. In silico studies included docking and molecular dynamics simulation coupled to molecular mechanics with generalized Born and surface area method energy decomposition on RNAP II. They were performed with a clinical drug that shares chemical similarities to a-amanitin, polymyxin B. The results show that polymyxin B potentially binds to RNAP II in the same interface of a-amanitin, preventing the toxin from binding to RNAP II. In vivo, the inhibition of the mRNA transcripts elicited by a-amanitin was efficiently reverted by polymyxin B in the kidneys. Moreover, polymyxin B significantly decreased the hepatic and renal a-amanitin-induced injury as seen by the histology and hepatic aminotransferases plasma data. In the survival assay, all animals exposed to a-amanitin died within 5 days, whereas 50 % survived up to 30 days when polymyxin B was administered 4, 8, and 12 h post-a-amanitin. Moreover, a single dose of polymyxin B administered concomitantly with a-amanitin was able to guarantee 100 % survival. Polymyxin B protects RNAP II from inactivation leading to an effective prevention of organ damage and increasing survival in a-amanitin-treated animals. The present use of clinically relevant concentrations of an already human-use-approved drug prompts the use of polymyxin B as an antidote for A. phalloides poisoning in humans.Juliana Garcia, Vera Marisa Costa, Ricardo Dinis-Oliveira and Ricardo Silvestre thank FCT-Foundation for Science and Technology-for their PhD grant (SFRH/BD/74979/2010), Post-doc grants (SFRH/BPD/63746/2009 and SFRH/BPD/110001/2015) and Investigator grants (IF/01147/2013) and (IF/00021/2014), respectively. This work was supported by the Fundacao para a Ciencia e Tecnologia (FCT) - project PTDC/DTPFTO/4973/2014 - and the European Union (FEDER funds through COMPETE) and National Funds (FCT, Fundacao para a Ciencia e Tecnologia) through project Pest-C/EQB/LA0006/2013
MyD88 Dependent Signaling Contributes to Protective Host Defense against Burkholderia pseudomallei
Background: Toll-like receptors (TLRs) have a central role in the recognition of pathogens and the initiation of the innate immune response. Myeloid differentiation primary-response gene 88 (MyD88) and TIR-domain-containing adaptor protein inducing IFNb (TRIF) are regarded as the key signaling adaptor proteins for TLRs. Melioidosis, which is endemic in SE-Asia, is a severe infection caused by the gram-negative bacterium Burkholderia pseudomallei. We here aimed to characterize the role of MyD88 and TRIF in host defense against melioidosis. Methodology and Principal Findings: First, we found that MyD88, but not TRIF, deficient whole blood leukocytes released less TNFa upon stimulation with B. pseudomallei compared to wild-type (WT) cells. Thereafter we inoculated MyD88 knockout (KO), TRIF mutant and WT mice intranasally with B. pseudomallei and found that MyD88 KO, but not TRIF mutant mice demonstrated a strongly accelerated lethality, which was accompanied by significantly increased bacterial loads in lungs, liver and blood, and grossly enhanced liver damage compared to WT mice. The decreased bacterial clearance capacity of MyD88 KO mice was accompanied by a markedly reduced early pulmonary neutrophil recruitment and a diminished activation of neutrophils after infection with B. pseudomallei. MyD88 KO leukocytes displayed an unaltered capacity to phagocytose and kill B. pseudomallei in vitro. Conclusions: MyD88 dependent signaling, but not TRIF dependent signaling, contributes to a protective host respons
Inhalation of β2 agonists impairs the clearance of nontypable Haemophilus influenzae from the murine respiratory tract
BACKGROUND: Nontypable Haemophilus influenzae (NTHi) is a common bacterial pathogen causing human respiratory tract infections under permissive conditions such as chronic obstructive pulmonary disease. Inhalation of β2-receptor agonists is a widely used treatment in patients with chronic obstructive pulmonary disease. The aim of this study was to determine the effect of inhalation of β2 agonists on the host immune response to respiratory tract infection with NTHi. METHODS: Mouse alveolar macrophages were stimulated in vitro with NTHi in the presence or absence of the β2 receptor agonists salmeterol or salbutamol. In addition, mice received salmeterol or salbutamol by inhalation and were intranasally infected with NTHi. End points were pulmonary inflammation and bacterial loads. RESULTS: Both salmeterol and salbutamol inhibited NTHi induced tumor necrosis factor-α (TNFα) release by mouse alveolar macrophages in vitro by a β receptor dependent mechanism. In line, inhalation of either salmeterol or salbutamol was associated with a reduced early TNFα production in lungs of mice infected intranasally with NTHi, an effect that was reversed by concurrent treatment with the β blocker propranolol. The clearance of NTHi from the lungs was impaired in mice treated with salmeterol or salbutamol, an adverse effect that was prevented by propranolol and independent of the reduction in TNFα. CONCLUSION: These data suggest that inhalation of salmeterol or salbutamol may negatively influence an effective clearance of NTHi from the airways
Innate Signaling in Otitis Media: Pathogenesis and Recovery
Otitis media (OM) is the most prevalent childhood disease in developed countries. Involvement of innate immunity mediated by Toll-like receptors (TLRs) in OM has been implicated primarily in cell lines and by association studies of innate immune gene polymorphisms with OM prevalence. However, the precise role of innate immunity in OM is incompletely understood. We review recent research that has advanced our understanding of how innate immunity in the middle ear is mediated by the interaction of pathogen molecules with receptors such as the TLRs, leading to the activation of adaptor molecules and production of proinflammatory cytokines. TLR genes and signaling molecules are upregulated in OM in a murine model. Deletion of several key innate immune genes results in persistent OM in mice, coupled with an inability to clear bacterial infection from the middle ear. It is concluded that an intact innate immune signaling system is critical to recovery from bacterial OM
Activation of an NLRP3 Inflammasome Restricts Mycobacterium kansasii Infection
Mycobacterium kansasii has emerged as an important nontuberculous mycobacterium pathogen, whose incidence and prevalence have been increasing in the last decade. M. kansasii can cause pulmonary tuberculosis clinically and radiographically indistinguishable from that caused by Mycobacterium tuberculosis infection. Unlike the widely-studied M. tuberculosis, little is known about the innate immune response against M. kansasii infection. Although inflammasome activation plays an important role in host defense against bacterial infection, its role against atypical mycobacteria remains poorly understood. In this report, the role of inflammasome activity in THP-1 macrophages against M. kansasii infection was studied. Results indicated that viable, but not heat-killed, M. kansasii induced caspase-1-dependent IL-1β secretion in macrophages. The underlying mechanism was found to be through activation of an inflammasome containing the NLR (Nod-like receptor) family member NLRP3 and the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD). Further, potassium efflux, lysosomal acidification, ROS production and cathepsin B release played a role in M. kansasii-induced inflammasome activation. Finally, the secreted IL-1β derived from caspase-1 activation was shown to restrict intracellular M. kansasii. These findings demonstrate a biological role for the NLRP3 inflammasome in host defense against M. kansasii
Circulating Levels of Adiponectin, Leptin, Fetuin-A and Retinol-Binding Protein in Patients with Tuberculosis: Markers of Metabolism and Inflammation
BACKGROUND: Wasting is known as a prominent feature of tuberculosis (TB). To monitor the disease state, markers of metabolism and inflammation are potentially useful. We thus analyzed two major adipokines, adiponectin and leptin, and two other metabolic markers, fetuin-A and retinol-binding protein 4 (RBP4). METHODS: The plasma levels of these markers were measured using enzyme-linked immunosorbent assays in 84 apparently healthy individuals (=no-symptom group) and 46 patients with active pulmonary TB around the time of treatment, including at the midpoint evaluation (=active-disease group) and compared them with body mass index (BMI), C-reactive protein (CRP), chest radiographs and TB-antigen specific response by interferon-γ release assay (IGRA). RESULTS: In the no-symptom group, adiponectin and leptin showed negative and positive correlation with BMI respectively. In the active-disease group, at the time of diagnosis, leptin, fetuin-A and RBP4 levels were lower than in the no-symptom group [adjusted means 2.01 versus 4.50 ng/ml, P<0.0001; 185.58 versus 252.27 µg/ml, P<0.0001; 23.88 versus 43.79 µg/ml, P<0.0001, respectively]. High adiponectin and low leptin levels were associated with large infiltrates on chest radiographs even after adjustment for BMI and other covariates (P=0.0033 and P=0.0020). During treatment, adiponectin levels increased further and then decreased. Leptin levels remained low. Initial low levels of fetuin-A and RBP4 almost returned to the normal reference range in concert with reduced CRP. CONCLUSIONS: Our data and recent literature suggest that low fat store and underlying inflammation may regulate these metabolic markers in TB in a different way. Decreased leptin, increased adiponectin, or this ratio may be a promising marker for severity of the disease independent of BMI. We should further investigate pathological roles of the balance between these adipokines
The role of leptin in the respiratory system: an overview
Since its cloning in 1994, leptin has emerged in the literature as a pleiotropic hormone whose actions extend from immune system homeostasis to reproduction and angiogenesis. Recent investigations have identified the lung as a leptin responsive and producing organ, while extensive research has been published concerning the role of leptin in the respiratory system. Animal studies have provided evidence indicating that leptin is a stimulant of ventilation, whereas researchers have proposed an important role for leptin in lung maturation and development. Studies further suggest a significant impact of leptin on specific respiratory diseases, including obstructive sleep apnoea-hypopnoea syndrome, asthma, COPD and lung cancer. However, as new investigations are under way, the picture is becoming more complex. The scope of this review is to decode the existing data concerning the actions of leptin in the lung and provide a detailed description of leptin's involvement in the most common disorders of the respiratory system
Glycosaminoglycans and Sialylated Glycans Sequentially Facilitate Merkel Cell Polyomavirus Infectious Entry
Merkel cell polyomavirus (MCV or MCPyV) appears to be a causal factor in the development of Merkel cell carcinoma, a rare but highly lethal form of skin cancer. Although recent reports indicate that MCV virions are commonly shed from apparently healthy human skin, the precise cellular tropism of the virus in healthy subjects remains unclear. To begin to explore this question, we set out to identify the cellular receptors or co-receptors required for the infectious entry of MCV. Although several previously studied polyomavirus species have been shown to bind to cell surface sialic acid residues associated with glycolipids or glycoproteins, we found that sialylated glycans are not required for initial attachment of MCV virions to cultured human cell lines. Instead, glycosaminoglycans (GAGs), such as heparan sulfate (HS) and chondroitin sulfate (CS), serve as initial attachment receptors during the MCV infectious entry process. Using cell lines deficient in GAG biosynthesis, we found that N-sulfated and/or 6-O-sulfated forms of HS mediate infectious entry of MCV reporter vectors, while CS appears to be dispensable. Intriguingly, although cell lines deficient in sialylated glycans readily bind MCV capsids, the cells are highly resistant to MCV reporter vector-mediated gene transduction. This suggests that sialylated glycans play a post-attachment role in the infectious entry process. Results observed using MCV reporter vectors were confirmed using a novel system for infectious propagation of native MCV virions. Taken together, the findings suggest a model in which MCV infectious entry occurs via initial cell binding mediated primarily by HS, followed by secondary interactions with a sialylated entry co-factor. The study should facilitate the development of inhibitors of MCV infection and help shed light on the infectious entry pathways and cellular tropism of the virus
High Diversity, Low Disparity and Small Body Size in Plesiosaurs (Reptilia, Sauropterygia) from the Triassic–Jurassic Boundary
Invasion of the open ocean by tetrapods represents a major evolutionary transition that occurred independently in cetaceans, mosasauroids, chelonioids (sea turtles), ichthyosaurs and plesiosaurs. Plesiosaurian reptiles invaded pelagic ocean environments immediately following the Late Triassic extinctions. This diversification is recorded by three intensively-sampled European fossil faunas, spanning 20 million years (Ma). These provide an unparalleled opportunity to document changes in key macroevolutionary parameters associated with secondary adaptation to pelagic life in tetrapods. A comprehensive assessment focuses on the oldest fauna, from the Blue Lias Formation of Street, and nearby localities, in Somerset, UK (Earliest Jurassic: 200 Ma), identifying three new species representing two small-bodied rhomaleosaurids (Stratesaurus taylori gen et sp. nov.; Avalonnectes arturi gen. et sp. nov) and the most basal plesiosauroid, Eoplesiosaurus antiquior gen. et sp. nov. The initial radiation of plesiosaurs was characterised by high, but short-lived, diversity of an archaic clade, Rhomaleosauridae. Representatives of this initial radiation were replaced by derived, neoplesiosaurian plesiosaurs at small-medium body sizes during a more gradual accumulation of morphological disparity. This gradualistic modality suggests that adaptive radiations within tetrapod subclades are not always characterised by the initially high levels of disparity observed in the Paleozoic origins of major metazoan body plans, or in the origin of tetrapods. High rhomaleosaurid diversity immediately following the Triassic-Jurassic boundary supports the gradual model of Late Triassic extinctions, mostly predating the boundary itself. Increase in both maximum and minimum body length early in plesiosaurian history suggests a driven evolutionary trend. However, Maximum-likelihood models suggest only passive expansion into higher body size categories
- …