4 research outputs found

    Pregabalin Add-On vs. Dose Increase in Levetiracetam Add-On Treatment: A Real-Life Trial in Dogs With Drug-Resistant Epilepsy

    Get PDF
    Epilepsy is a common neurological disorder affecting 0.6–0.75% of dogs in veterinary practice. Treatment is frequently complicated by the occurrence of drug-resistant epilepsy and cluster seizures in dogs with idiopathic epilepsy. Only few studies are available to guide treatment choices beyond licensed veterinary drugs. The aim of the study was to compare antiseizure efficacy and tolerability of two add-on treatment strategies in dogs with drug-resistant idiopathic epilepsy. The study design was a prospective, open-label, non-blinded, comparative treatment trial. Treatment success was defined as a 3-fold extension of the longest baseline interseizure interval and to a minimum of 3 months. To avoid prolonged adherence to a presumably ineffective treatment strategy, dog owners could leave the study after the third day with generalized seizures if the interseizure interval failed to show a relevant increase. Twenty-six dogs (mean age 5.5 years, mean seizure frequency 4/month) with drug-resistant idiopathic epilepsy and a history of cluster seizures were included. Dogs received either add-on treatment with pregabalin (PGB) 4 mg/kg twice daily (14 dogs) or a dose increase in levetiracetam (LEV) add-on treatment (12 dogs). Thirteen dogs in the PGB group had drug levels within the therapeutic range for humans. Two dogs in the PGB group (14.3%; 2/14) and one dog in the LEV group (8.3%; 1/12) achieved treatment success with long seizure-free intervals from 122 to 219 days but then relapsed to their early seizure frequency 10 months after the study inclusion. The overall low success rates with both treatment strategies likely reflect a real-life situation in canine drug-resistant idiopathic epilepsy in everyday veterinary practice. These results delineate the need for research on better pharmacologic and non-pharmacologic treatment strategies in dogs with drug-resistant epilepsy

    Biopsy Characteristics, Subtypes, and Prognostic Features in 107 Cases of Feline Presumed Immune-Mediated Polyneuropathy

    Get PDF
    Inflammatory polyradiculoneuropathy (IMPN) is one of the causes of sudden onset of neuromuscular signs such as para-/tetraparesis in young cats. Even though most cases have a favorable outcome, persistent deficits, relapses, and progressive courses are occasionally seen. As clinical presentation does not always appear to predict outcome and risk of recurrence, this study was initiated to screen for prognostic biopsy findings in a large cohort of histologically confirmed IMPN cases with clinical follow-up. In total, nerve and muscle specimens of 107 cats with biopsy diagnosis of presumed autoreactive inflammatory polyneuropathy and 22 control cases were reviewed by two blinded raters for a set of 36 histological parameters. To identify patterns and subtypes of IMPN, hierarchical k-means clustering of 33 histologic variables was performed. Then, the impact of histological parameters on IMPN outcome was evaluated via an univariate analysis to identify variables for the final multivariate model. The data on immediate outcome and follow-up were collected from submitting neurologists using a purpose-designed questionnaire. Hierarchical k-means clustering sorted the tissues into 4 main categories: cluster 1 (44/129) represents a purely inflammatory IMPN picture, whereas cluster 2 (47/129) was accompanied by demyelinating features and cluster 3 (16/129) by Wallerian degeneration. Cluster 4 (22/129) reflects normal tissues from non-neuropathic control cats. Returned questionnaires provided detailed information on outcome in 63 animals. They were categorized into recovered and non-recovered. Thereby, fiber-invasive infiltrates by mononuclear cells and mild fiber loss in intramuscular nerve branches correlated with higher probabilities of recovery. Remyelination in semithin sections, on the other hand, is correlated with a less favorable outcome. Animals grouping in cluster 1 had a tendency to a higher probability of recovery compared to other clusters. In conclusion, diagnosis of feline IMPN from nerve and muscle biopsies allowed for the identification of histologic features that were positively or negatively correlated with outcome

    Biopsy Characteristics, Subtypes, and Prognostic Features in 107 Cases of Feline Presumed Immune-Mediated Polyneuropathy

    No full text
    Inflammatory polyradiculoneuropathy (IMPN) is one of the causes of sudden onset of neuromuscular signs such as para-/tetraparesis in young cats. Even though most cases have a favorable outcome, persistent deficits, relapses, and progressive courses are occasionally seen. As clinical presentation does not always appear to predict outcome and risk of recurrence, this study was initiated to screen for prognostic biopsy findings in a large cohort of histologically confirmed IMPN cases with clinical follow-up. In total, nerve and muscle specimens of 107 cats with biopsy diagnosis of presumed autoreactive inflammatory polyneuropathy and 22 control cases were reviewed by two blinded raters for a set of 36 histological parameters. To identify patterns and subtypes of IMPN, hierarchical k-means clustering of 33 histologic variables was performed. Then, the impact of histological parameters on IMPN outcome was evaluated via an univariate analysis to identify variables for the final multivariate model. The data on immediate outcome and follow-up were collected from submitting neurologists using a purpose-designed questionnaire. Hierarchical k-means clustering sorted the tissues into 4 main categories: cluster 1 (44/129) represents a purely inflammatory IMPN picture, whereas cluster 2 (47/129) was accompanied by demyelinating features and cluster 3 (16/129) by Wallerian degeneration. Cluster 4 (22/129) reflects normal tissues from non-neuropathic control cats. Returned questionnaires provided detailed information on outcome in 63 animals. They were categorized into recovered and non-recovered. Thereby, fiber-invasive infiltrates by mononuclear cells and mild fiber loss in intramuscular nerve branches correlated with higher probabilities of recovery. Remyelination in semithin sections, on the other hand, is correlated with a less favorable outcome. Animals grouping in cluster 1 had a tendency to a higher probability of recovery compared to other clusters. In conclusion, diagnosis of feline IMPN from nerve and muscle biopsies allowed for the identification of histologic features that were positively or negatively correlated with outcome
    corecore