12 research outputs found

    Assay validity of point-of-care platelet function tests in thrombocytopenic blood samples

    Get PDF
    Point-of-care (POC) platelet function tests are faster and easier to perform than in-depth assessment by flow cytometry. At low platelet counts, however, POC tests are prone to assess platelet function incorrectly. Lower limits of platelet count required to obtain valid test results were defined and a testing method to facilitate comparability between different tests was established. We assessed platelet function in whole blood samples of healthy volunteers at decreasing platelet counts (> 100, 80-100, 50-80, 30-50 and < 30 x109/L) using two POC tests: impedance aggregometry and in-vitro bleeding time. Flow cytometry served as the gold standard. The number of platelets needed to reach 50% of the maximum function (ED50) and the lower reference limit (EDref) were calculated to define limits of test validity. The minimal platelet count required for reliable test results was 100 x109/L for impedance aggregometry and in-vitro bleeding time but only 30 x109/L for flow cytometry. Comparison of ED50 and EDref showed significantly lower values for flow cytometry than either POC test (P value < 0.05) but no difference between POC tests nor between the used platelet agonists within a test method. Calculating the ED50 and EDref provides an effective way to compare values from different platelet function assays. Flow cytometry enables correct platelet function testing as long as platelet count is > 30 x109/L whereas impedance aggregometry and in-vitro bleeding time are inconsistent unless platelet count is > 100 x109/L

    Increased plasma vaspin concentration in patients with sepsis: an exploratory examination

    Get PDF
    Introduction: Vaspin (visceral adipose tissue-derived serpin) was first described as an insulin-sensitizing adipose tissue hormone. Recently its anti-inflammatory function has been demonstrated. Since no appropriate data is available yet, we sought to investigate the plasma concentrations of vaspin in sepsis. Materials and methods: 57 patients in intensive care, fulfilling the ACCP/SCCM criteria for sepsis, were prospectively included in our exploratory study. The control group consisted of 48 critically ill patients, receiving intensive care after trauma or major surgery. Patients were matched by age, sex, weight and existence of diabetes before statistical analysis. Blood samples were collected on the day of diagnosis. Vaspin plasma concentrations were measured using a commercially available enzyme-linked immunosorbent assay. Results: Vaspin concentrations were significantly higher in septic patients compared to the control group (0.3 (0.1-0.4) ng/mL vs. 0.1 (0.0-0.3) ng/mL, respectively; P < 0.001). Vaspin concentration showed weak positive correlation with concentration of C-reactive protein (CRP) (r = 0.31, P = 0.002) as well as with SAPS II (r = 0.34, P = 0.002) and maximum of SOFA (r = 0.39, P < 0.001) scoring systems, as tested for the overall study population. Conclusion: In the sepsis group, vaspin plasma concentration was about three-fold as high as in the median surgical control group. We demonstrated a weak positive correlation between vaspin and CRP concentration, as well as with two scoring systems commonly used in intensive care settings. Although there seems to be some connection between vaspin and inflammation, its role in human sepsis needs to be evaluated further

    Duration of invasive mechanical ventilation prior to extracorporeal membrane oxygenation is not associated with survival in acute respiratory distress syndrome caused by coronavirus disease 2019

    Get PDF
    BACKGROUND: Duration of invasive mechanical ventilation (IMV) prior to extracorporeal membrane oxygenation (ECMO) affects outcome in acute respiratory distress syndrome (ARDS). In coronavirus disease 2019 (COVID-19) related ARDS, the role of pre-ECMO IMV duration is unclear. This single-centre, retrospective study included critically ill adults treated with ECMO due to severe COVID-19-related ARDS between 01/2020 and 05/2021. The primary objective was to determine whether duration of IMV prior to ECMO cannulation influenced ICU mortality. RESULTS: During the study period, 101 patients (mean age 56 [SD ± 10] years; 70 [69%] men; median RESP score 2 [IQR 1–4]) were treated with ECMO for COVID-19. Sixty patients (59%) survived to ICU discharge. Median ICU length of stay was 31 [IQR 20.7–51] days, median ECMO duration was 16.4 [IQR 8.7–27.7] days, and median time from intubation to ECMO start was 7.7 [IQR 3.6–12.5] days. Fifty-three (52%) patients had a pre-ECMO IMV duration of > 7 days. Pre-ECMO IMV duration had no effect on survival (p = 0.95). No significant difference in survival was found when patients with a pre-ECMO IMV duration of < 7 days (< 10 days) were compared to ≄ 7 days (≄ 10 days) (p = 0.59 and p = 1.0). CONCLUSIONS: The role of prolonged pre-ECMO IMV duration as a contraindication for ECMO in patients with COVID-19-related ARDS should be scrutinised. Evaluation for ECMO should be assessed on an individual and patient-centred basis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13613-022-00980-3

    Monitoring of Enoxaparin during Hemodialysis Covered by Regional Citrate Anticoagulation in Acute Kidney Injury: A Prospective Cohort Study

    No full text
    Background: Current guidelines recommend the monitoring of anti-factor Xa (anti-Xa) levels to avoid an accumulation of low-molecular-weight heparins in patients with acute kidney injury, but there is no evidence on how to proceed with such monitoring during continuous renal replacement therapy. Against this background, we investigated the potential accumulation of enoxaparin administered subcutaneously for venous thromboembolism prophylaxis in critically ill patients during continuous renal replacement therapy covered by regional citrate anticoagulation. Methods: Anti-Xa levels were measured at baseline (≀12 h before renal replacement therapy) and on three consecutive days (A to C) when enoxaparin had reached trough levels. Supplementary testing included modified assays of rotational thromboelastometry known to be highly sensitive for low-molecular-weight heparins. Results: The 16 men and 13 women included were adults comparable in age, body mass index, thromboembolism risk assessment, and clinical severity of the disease. Throughout the four examinations, the median trough levels of anti-Xa remained below the detection limit of the test (&lt;0.1 IU mL−1), with interquartile ranges of &lt;0.1 to 0.14 IU mL−1 at baseline and &lt;0.1 to 0.16 IU mL−1 on days A/B/C. All rotational thromboelastometry parameters of clot initiation and clot formation dynamics did not significantly change from baseline to day C. Conclusions: Neither anti-Xa levels nor modified assays of rotational thromboelastometry revealed any accumulation of enoxaparin administered for thromboprophylaxis during continuous renal replacement therapy covered by regional citrate anticoagulation. Although generally recommended in patients with acute kidney injury, monitoring of anti-Xa levels should be questioned in this defined setting

    Effect of Goal-Directed Crystalloid versus Colloid Administration on Perioperative Hemostasis in Partial Hepatectomy: A Randomized, Controlled Trial

    No full text
    The use of colloids may impair hemostatic capacity. However, it remains unclear whether this also holds true when colloids are administered in a goal-directed manner. The aim of the present study was to assess the effect of goal-directed fluid management with 6% hydroxyethyl starch 130/0.4 on hemostasis compared to lactated Ringer’s solution in patients undergoing partial hepatectomy. We included 50 patients in this prospective, randomized, controlled trial. According to randomization, patients received boluses of either hydroxyethyl starch or lactated Ringer’s solution within the scope of goal-directed fluid management. Minimum perioperative FIBTEM maximum clot firmness (MCF) served as the primary outcome parameter. Secondary outcome parameters included fibrinogen levels and estimated blood loss. In the hydroxyethyl starch (HES) group the minimum FIBTEM MCF value was significantly lower (effect size −6 mm, 95% CI −10 to −3, p &lt; 0.001) in comparison to the lactated Ringer’s solution (RL) group. These results returned to normal within 24 h. We observed no difference in plasma fibrinogen levels (RL 3.08 ± 0.37 g L−1 vs HES 2.65 ± 0.64 g L−1, p = 0.18) or the amount of blood loss between the two groups (RL 470 ± 299 mL vs HES 604 ± 351 mL, p = 0.18). We showed that goal-directed use of HES impairs fibrin polymerization in a dose-dependent manner when compared with RL. Results returned to normal on the first postoperative day without administration of procoagulant drugs and no differences in blood loss were observed

    Diagnostic and therapeutic approach in adult patients with traumatic brain injury receiving oral anticoagulant therapy: an Austrian interdisciplinary consensus statement

    No full text
    Abstract There is a high degree of uncertainty regarding optimum care of patients with potential or known intake of oral anticoagulants and traumatic brain injury (TBI). Anticoagulation therapy aggravates the risk of intracerebral hemorrhage but, on the other hand, patients take anticoagulants because of an underlying prothrombotic risk, and this could be increased following trauma. Treatment decisions must be taken with due consideration of both these risks. An interdisciplinary group of Austrian experts was convened to develop recommendations for best clinical practice. The aim was to provide pragmatic, clear, and easy-to-follow clinical guidance for coagulation management in adult patients with TBI and potential or known intake of platelet inhibitors, vitamin K antagonists, or non-vitamin K antagonist oral anticoagulants. Diagnosis, coagulation testing, and reversal of anticoagulation were considered as key steps upon presentation. Post-trauma management (prophylaxis for thromboembolism and resumption of long-term anticoagulation therapy) was also explored. The lack of robust evidence on which to base treatment recommendations highlights the need for randomized controlled trials in this setting

    Accuracy of a Dual-Sensor Heat-Flux (DHF) Non-Invasive Core Temperature Sensor in Pediatric Patients Undergoing Surgery

    No full text
    Accurate temperature measurement is crucial for the perioperative management of pediatric patients, and non-invasive thermometry is necessary when invasive methods are infeasible. A prospective observational study was conducted on 57 patients undergoing elective surgery. Temperatures were measured using a dual-sensor heat-flux (DHF) thermometer (Tcoreℱ) and a rectal temperature probe (TRec), and the agreement between the two measurements was assessed. The DHF measurements showed a bias of +0.413 °C compared with those of the TRec. The limits of agreement were broader than the pre-defined ±0.5 °C range (−0.741 °C and +1.567 °C). Although the DHF sensors tended to overestimate the core temperature compared to the rectal measurements, an error grid analysis demonstrated that 95.81% of the DHF measurements would not have led to a wrong clinical decision, e.g., warming or cooling when not necessary. In conclusion, the low number of measurements that would have led to incorrect decisions suggests that the DHF sensor can be considered an option for continuous temperature measurement when more invasive methods are infeasible

    Circulating endothelial extracellular vesicle signatures correspond with ICU requirement: an exploratory study in COVID-19 patients

    No full text
    Abstract Extracellular vesicles (EVs) represent nanometer-sized, subcellular spheres, that are released from almost any cell type and carry a wide variety of biologically relevant cargo. In severe cases of coronavirus disease 2019 (COVID-19) and other states of systemic pro-inflammatory activation, EVs, and their cargo can serve as conveyors and indicators for disease severity and progression. This information may help distinguish individuals with a less severe manifestation of the disease from patients who exhibit severe acute respiratory distress syndrome (ARDS) and require intensive care measures. Here, we investigated the potential of EVs and associated miRNAs to distinguish normal ward patients from intensive care unit (ICU) patients (N = 10/group), with 10 healthy donors serving as the control group. Blood samples from which plasma and subsequently EVs were harvested by differential ultracentrifugation (UC) were obtained at several points in time throughout treatment. EV-enriched fractions were characterized by flow cytometry (FC), nanoparticle tracking analysis (NTA), and qPCR to determine the presence of selected miRNAs. Circulating EVs showed specific protein signatures associated with endothelial and platelet origin over the course of the treatment. Additionally, significantly higher overall EV quantities corresponded with increased COVID-19 severity. MiR-223-3p, miR-191-5p, and miR-126-3p exhibited higher relative expression in the ICU group. Furthermore, EVs presenting endothelial-like protein signatures and the associated miR-126-3p showed the highest area under the curve in terms of receiver operating characteristics regarding the requirement for ICU treatment. In this exploratory investigation, we report that specific circulating EVs and miRNAs appear at higher levels in COVID-19 patients, especially when critical care measures are indicated. Our data suggest that endothelial-like EVs and associated miRNAs likely represent targets for future laboratory assays and may aid in clinical decision-making in COVID-19
    corecore