443 research outputs found

    Thermodynamic properties of confined interacting Bose gases - a renormalization group approach

    Full text link
    A renormalization group method is developed with which thermodynamic properties of a weakly interacting, confined Bose gas can be investigated. Thereby effects originating from a confining potential are taken into account by periodic boundary conditions and by treating the resulting discrete energy levels of the confined degrees of freedom properly. The resulting density of states modifies the flow equations of the renormalization group in momentum space. It is shown that as soon as the characteristic length of confinement becomes comparable to the thermal wave length of a weakly interacting and trapped Bose gas its thermodynamic properties are changed significantly. This is exemplified by investigating characteristic bunching properties of the interacting Bose gas which manifest themselves in the second order coherence factor

    Entropy, time irreversibility and Schroedinger equation in a primarily discrete space-time

    Full text link
    In this paper we show that the existence of a primarily discrete space-time may be a fruitful assumption from which we may develop a new approach of statistical thermodynamics in pre-relativistic conditions. The discreetness of space-time structure is determined by a condition that mimics the Heisenberg uncertainty relations and the motion in this space-time model is chosen as simple as possible. From these two assumptions we define a path-entropy that measures the number of closed paths associated with a given energy of the system preparation. This entropy has a dynamical character and depends on the time interval on which we count the paths. We show that it exists an like-equilibrium condition for which the path-entropy corresponds exactly to the usual thermodynamic entropy and, more generally, the usual statistical thermodynamics is reobtained. This result derived without using the Gibbs ensemble method shows that the standard thermodynamics is consistent with a motion that is time-irreversible at a microscopic level. From this change of paradigm it becomes easy to derive a HtheoremH-theorem. A comparison with the traditional Boltzmann approach is presented. We also show how our approach can be implemented in order to describe reversible processes. By considering a process defined simultaneously by initial and final conditions a well defined stochastic process is introduced and we are able to derive a Schroedinger equation, an example of time reversible equation.Comment: latex versio

    Path Integral Approach to the Non-Relativistic Electron Charge Transfer

    Get PDF
    A path integral approach has been generalized for the non-relativistic electron charge transfer processes. The charge transfer - the capture of an electron by an ion passing another atom or more generally the problem of rearrangement collisions is formulated in terms of influence functionals. It has been shown that the electron charge transfer process can be treated either as electron transition problem or as elastic scattering of ion and atom in the some effective potential field. The first-order Born approximation for the electron charge transfer cross section has been reproduced to prove the adequacy of the path integral approach for this problem.Comment: 19 pages, 1 figure, to appear in Journal of Physics B: Atomic, Molecular & Optical, vol.34, 200

    Brownian Motion and Polymer Statistics on Certain Curved Manifolds

    Get PDF
    We have calculated the probability distribution function G(R,L|R',0) of the end-to-end vector R-R' and the mean-square end-to-end distance (R-R')^2 of a Gaussian polymer chain embedded on a sphere S^(D-1) in D dimensions and on a cylinder, a cone and a curved torus in 3-D. We showed that: surface curvature induces a geometrical localization area; at short length the polymer is locally "flat" and (R-R')^2 = L l in all cases; at large scales, (R-R')^2 is constant for the sphere, it is linear in L for the cylinder and reaches different constant values for the torus. The cone vertex induces (function of opening angle and R') contraction of the chain for all lengths. Explicit crossover formulas are derived.Comment: 9 pages, 4 figures, RevTex, uses amssymb.sty and multicol.sty, to appear in Phys. Rev

    Onsager-Machlup theory and work fluctuation theorem for a harmonically driven Brownian particle

    Full text link
    We extend Tooru-Cohen analysis for nonequilirium steady state(NSS) of a Brownian particle to nonequilibrium oscillatory state (NOS) of Brownian particle by considering time dependent external drive protocol. We consider an unbounded charged Brownian particle in the presence of an oscillating electric field and prove work fluctuation theorem, which is valid for any initial distribution and at all times. For harmonically bounded and constantly dragged Brownian particle considered by Tooru and Cohen, work fluctuation theorem is valid for any initial condition(also NSS), but only in large time limit. We use Onsager-Machlup Lagrangian with a constraint to obtain frequency dependent work distribution function, and describe entropy production rate and properties of dissipation functions for the present system using Onsager-Machlup functional.Comment: 6 pages, 1 figur

    Why is the DNA Denaturation Transition First Order?

    Full text link
    We study a model for the denaturation transition of DNA in which the molecules are considered as composed of a sequence of alternating bound segments and denaturated loops. We take into account the excluded-volume interactions between denaturated loops and the rest of the chain by exploiting recent results on scaling properties of polymer networks of arbitrary topology. The phase transition is found to be first order in d=2 dimensions and above, in agreement with experiments and at variance with previous theoretical results, in which only excluded-volume interactions within denaturated loops were taken into account. Our results agree with recent numerical simulations.Comment: Revised version. To appear in Phys. Rev. Let

    Quench Induced Vortices in the Symmetry Broken Phase of Liquid 4^4He

    Full text link
    Motivated by the study of cosmological phase transitions, our understanding of the formation of topological defects during spontaneous symmetry-breaking and the associated non-equilibrium field theory has recently changed. Experiments have been performed in superfluid 4^4He to test the new ideas involved. In particular, it has been observed that a vortex density is seen immediately after pressure quenches from just below the λ\lambda transition. We discuss possible interpretations of these vortices, conclude they are consistent with our ideas of vortex formation and propose a modification of the original experiments.Comment: 29 pages, RevTeX with one EPS figur

    Path-integral analysis of fluctuation theorems for general Langevin processes

    Full text link
    We examine classical, transient fluctuation theorems within the unifying framework of Langevin dynamics. We explicitly distinguish between the effects of non-conservative forces that violate detailed balance, and non-autonomous dynamics arising from the variation of an external parameter. When both these sources of nonequilibrium behavior are present, there naturally arise two distinct fluctuation theorems.Comment: 24 pages, one figur

    Statistical Mechanics of Membrane Protein Conformation: A Homopolymer Model

    Full text link
    The conformation and the phase diagram of a membrane protein are investigated via grand canonical ensemble approach using a homopolymer model. We discuss the nature and pathway of α\alpha-helix integration into the membrane that results depending upon membrane permeability and polymer adsorptivity. For a membrane with the permeability larger than a critical value, the integration becomes the second order transition that occurs at the same temperature as that of the adsorption transition. For a nonadsorbing membrane, the integration is of the first order due to the aggregation of α\alpha-helices.Comment: RevTeX with 5 postscript figure

    Kinetics of a Network of Vortex Loops in He II and a Theory of Superfluid Turbulence

    Full text link
    A theory is developed to describe the superfluid turbulence on the base of kinetics of the merging and splitting vortex loops. Because of very frequent reconnections the vortex loops (as a whole) do not live long enough to perform any essential evolution due to the deterministic motion. On the contrary, they rapidly merge and split, and these random recombination processes prevail over other slower dynamic processes. To develop quantitative description we take the vortex loops to have a Brownian structure with the only degree of freedom, which is the length ll of the loop. We perform investigation on the base of the Boltzmann type kinetic equation for the distribution function n(l)n(l) of number of loops with length ll. By use of the special ansatz in the collision integral we have found the exact power-like solution to kinetic equation in the stationary case. This solution is not (thermodynamically) equilibrium, but on the contrary, it describes the state with two mutual fluxes of the length (or energy) in space of sizes of the vortex loops. The term flux means just redistribution of length (or energy) among the loops of different sizes due to reconnections. Analyzing this solution we drew several results on the structure and dynamics of the vortex tangle in the turbulent superfluid helium. In particular, we evaluated the mean radius of the curvature and the full rate of the reconnection events. We also studied the evolution of the full length of vortex loops per unit volume-the so-called vortex line density. It is shown this evolution to obey the famous Vinen equation. The properties of the Vinen equation from the point of view of the developed approach had been discussed.Comment: 34 pages, 9 Postscript figures, [aps,preprint,12pt]{revtex4
    corecore